首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The geometries, stabilities, and electronic properties of Ge(n) and CuGe(n) (n = 2-13) clusters have been systematically investigated by using density-functional approach. According to optimized CuGe(n) geometries, growth patterns of Cu-capped Ge(n) or Cu-substituted Ge(n+1) clusters for the small- or middle-sized CuGe(n) clusters as well as growth patterns of Cu-concaved Ge(n) or Ge-capped CuGe(n-1) clusters for the large-sized CuGe(n) clusters are apparently dominant. The average atomic binding energies and fragmentation energies are calculated and discussed; particularly, the relative stabilities of CuGe10 and Ge10 are the strongest among all different sized CuGe(n) and Ge(n) clusters, respectively. These findings are in good agreement with the available experimental results on CoGe10- and Ge10 clusters. Consequently, unlike some transition metal (TM)Si12, the hexagonal prism CuGe12 is only low-lying structure; however, the basket-like structure is located as the lowest-energy structure. Different from some TM-doped silicon clusters, charge always transfers from copper to germanium atoms in all different sized clusters. Furthermore, the calculated highest occupied molecular orbital and lowest unoccupied molecular orbital (HOMO-LUMO) gaps are obviously decreased when Cu is doped into the Ge(n) clusters, together with the decrease of HOMO-LUMO gaps, as the size of clusters increases. Additionally, the contribution of the doped Cu atom to bond properties and polarizabilities of the Ge(n) clusters is also discussed.  相似文献   

2.
Geometries associated with relative stabilities, energy gaps, and polarities of W-doped germanium clusters have been investigated systematically by using density functional theory. The threshold size for the endohedral coordination and the critical size of W-encapsulated Gen structures emerge as, respectively, n = 8 and n = 12, while the fullerene-like W@Ge(n) clusters appears at n = 14. The evaluated relative stabilities in term of the calculated fragmentation energies reveal that the fullerene-like W@Ge(14) and W@Ge(16) structures as well as the hexagonal prism WGe(12) have enhanced stabilities over their neighboring clusters. Furthermore, the calculated polarities of the W@Ge(n) reveal that the bicapped tetragonal antiprism WGe(10) is a polar molecule while the hexagonal prism WGe(12) is a nonpolar molecule. Moreover, the recorded natural populations show that the charges transfer from the germanium framework to the W atom. Additionally, the WGe(12) cluster with large highest occupied molecular orbital-lowest unoccupied molecular orbital (HOMO-LUMO) gap, large fragmentation energy, and large binding energy is supposed to be suitable as a building block of assembly cluster material. It should be pointed out that the remarkable features of W@Ge(n) clusters above are distinctly different from those of transition metal (TM) doped Ge(n) (TM = Cu and Ni) clusters, indicating that the growth pattern of the TMGe(n) depends on the kind of doped TM impurity.  相似文献   

3.
The behaviors of the bimetal Mo-Mo doped cagelike silicon clusters Mo2Sin at the size of n=9-16 have been investigated systematically with the density functional approach. The growth-pattern behaviors, relative stabilities, and charge-transfer of these clusters are presented and discussed. The optimized geometries reveal that the dominant growth patterns of the bimetal Mo-Mo doped on opened cagelike silicon clusters (n=9-13) are based on pentagon prism MoSi10 and hexagonal prism MoSi12 clusters, while the Mo2 encapsulated Sin(n=14-16) frames are dominant growth behaviors for the large-sized clusters. The doped Mo2 dimer in the Sin frames is dissociated under the interactions of the Mo2 and Sin frames which are examined in term of the calculated Mo-Mo distance. The calculated fragmentation energies manifest that the remarkable local maximums of stable clusters are Mo2-doped Sin with n=10 and 12; the obtained relative stabilities exhibit that the Mo2-doped Si10 cluster is the most stable species in all different sized clusters. Natural population analysis shows that the charge-transfer phenomena appearing in the Mo2-doped Sin clusters are analogous to the single transition metal Re or W doped silicon clusters. In addition, the properties of frontier orbitals of Mo2-doped Sin (n=10 and 12) clusters show that the Mo2Si10 and Mo2Si12 isomers have enhanced chemical stabilities because of their larger HOMO-LUMO gaps. Interestingly, the geometry of the most stable Mo2Si9 cluster has the framework which is analogous to that of Ni2Ge9 cluster confirmed by recent experimental observation (Goicoechea, J. M.; Sevov, S. C. J. Am Chem. Soc. 2006, 128, 4155).  相似文献   

4.
We performed an unbiased search for low-energy structures of medium-sized neutral Si n and Ge n clusters ( n = 25-33) using a genetic algorithm (GA) coupled with tight-binding interatomic potentials. Structural candidates obtained from our GA search were further optimized by first-principles calculations using density functional theory (DFT). Our approach reproduces well the lowest-energy structures of Si n and Ge n clusters of n = 25-29 compared to previous studies, showing the accuracy and reliability of our approach. In the present study, we pay more attention to determine low-lying isomers of Si n and Ge n ( n = 29-33) and study the growth patterns of these clusters. The B3LYP calculations suggest that the growth pattern of Si n ( n = 25-33) clusters undergoes a transition from prolate to cage at n = 31, while this transition appears at n = 26 from the PBE-calculated results. In the size range of 25-33, the corresponding Ge n clusters hold the prolate growth pattern. The relative stabilities and different structural motifs of Si n and Ge n ( n = 25-33) clusters were studied, and the changes of small cluster structures, when acting as building blocks of large clusters, were also discussed.  相似文献   

5.
李思殿 《化学学报》1994,52(9):866-871
基于从晶体锗确立的多体展开势能函数, 本文通过坐标完全优化, 发现小的锗原子簇分子(Ge~2~Ge~14)倾向于形成密堆积结构, 表面原子分布以蝶形四元环(D~2d)为主; 常见立方晶体“微观晶体碎片”的分层优化结果表明, 在Ge~15~Ge~100范围内, 多数壳层的原子到分子中心的距离均受到压缩, 且以畸变的简单立方、面心立方及体心立方较为稳定; 在这些畸变密堆积结构中, 表面原子向内压缩最为严重, 使整个分子趋于球形化。较为开放的金刚石类层状原子族只有当所含原子数达数百以上时才可能相对更为稳定。  相似文献   

6.
Electronic properties of silicon and germanium atom doped indium clusters, In(n)Si(m) and In(n)Ge(m), were investigated by photoionization spectroscopy of the neutrals and photoelectron spectroscopy of the anions. Size dependence of ionization energy and electron affinity for In(n)Si(1) and In(n)Ge(1) exhibit pronounced even-odd alternation at cluster sizes of n = 10-16, as compared to those for pure In(n) clusters. This result shows that symmetry lowering with the doped atom of Si or Ge results in undegeneration of electronic states in the 1d shell formed by monovalent In atoms.  相似文献   

7.
The geometries, stabilities, and electronic and magnetic properties of small-sized Zr(n) (n=2-8) clusters with different spin configurations were systematically investigated by using density functional approach. Emphasis is placed on studies that focus on the total energies, equilibrium geometries, growth-pattern behaviors, fragmentation energies, and magnetic characteristics of zirconium clusters. The optimized geometries show that the large-sized low-lying Zr(n) (n=5-8) clusters become three-dimensional structures. Particularly, the relative stabilities of Zr(n) clusters in terms of the calculated fragmentation energies and second-order difference of energies are discussed, exhibiting that the magic numbers of stabilities are n=2, 5, and 7 and that the pentagonal bipyramidal D(5h) Zr(7) geometry is the most stable isomer and a nonmagnetic ground state. Furthermore, the investigated magnetic moments confirm that the atomic averaged magnetic moments of the Zr(n) (n not equal to 2) display an odd-even oscillation features and the tetrahedron C(s) Zr(4) structure has the biggest atomic averaged magnetic moment of 1.5 mu(B)/at. In addition, the calculated highest occupied molecular orbital-lowest unoccupied molecular orbital gaps indicate that the Zr(n) (n=2 and 7) clusters have dramatically enhanced chemical stabilities.  相似文献   

8.
We performed a constrained search for the geometries of low-lying neutral germanium clusters Ge(N) in the size range of 21 < or = N < or = 29. The basin-hopping global optimization method is employed for the search. The potential-energy surface is computed based on the plane-wave pseudopotential density functional theory. A new series of low-lying clusters is found on the basis of several generic structural motifs identified previously for silicon clusters [S. Yoo and X. C. Zeng, J. Chem. Phys. 124, 054304 (2006)] as well as for smaller-sized germanium clusters [S. Bulusu et al., J. Chem. Phys. 122, 164305 (2005)]. Among the generic motifs examined, we found that two motifs stand out in producing most low-lying clusters, namely, the six/nine motif, a puckered-hexagonal-ring Ge6 unit attached to a tricapped trigonal prism Ge9, and the six/ten motif, a puckered-hexagonal-ring Ge6 unit attached to a bicapped antiprism Ge10. The low-lying clusters obtained are all prolate in shape and their energies are appreciably lower than the near-spherical low-energy clusters. This result is consistent with the ion-mobility measurement in that medium-sized germanium clusters detected are all prolate in shape until the size N approximately 65.  相似文献   

9.
Density functional theory (DFT) at the hybrid B3LYP level has been applied to Ge10z germanium clusters (z = -6, -4, -2, 0, +2, +4, +6) starting from 12 different initial configurations. The D4d 4,4-bicapped square antiprism found experimentally in B10H102- and other 10-vertex clusters with 22 skeletal electrons is calculated for the isoelectronic Ge102- to be the global minimum by more than 15 kcal/mol. The global minima found for electron-rich clusters Ge104- and Ge106- are not those known experimentally. However, experimentally known structures for nido-B10H14 and the pentagonal antiprism of arachno-Pd@Bi104+ are found at higher but potentially accessible energies for Ge104- and Ge106-. The global minimum for Ge10 is the C3v 3,4,4,4-tetracapped trigonal prism predicted by the Wade-Mingos rules and found experimentally in isoelectronic Ni@Ga1010-. However, only slightly above this global minimum for Ge10 (+3.3 kcal/mol) is the likewise C3v isocloso 10-vertex deltahedron found in metallaboranes such as (eta6-arene)RuB9H9 derivatives. Structures found for more electron-poor clusters Ge102+ and Ge104+ include various capped octahedra and pentagonal bipyramids. This study predicts a number of 10-vertex cluster structures that have not yet been realized experimentally but would be interesting targets for future synthetic 10-vertex cluster chemistry using vertex units isolobal with the germanium vertices used in this work.  相似文献   

10.
Reactions of germanium atoms and small clusters with carbon monoxide molecules in solid argon have been studied using matrix isolation infrared absorption spectroscopy. Besides the previously reported GeCO monocarbonyl, the Ge2(CO)2 and Ge(n)CO (n = 2-5) carbonyl molecules are formed spontaneously on annealing and are characterized on the basis of isotopic substitution and theoretical calculations. It is found that Ge2CO, Ge3CO, and Ge5CO are bridge-bonded carbonyl compounds, whereas Ge2(CO)2 and Ge4CO are terminal-bonded carbonyl molecules.  相似文献   

11.
利用密度泛函理论在广义梯度近似下研究了GenEu(n=1-13)团簇的生长模式和磁性.结果表明:对于GenEu(n=1-13)团簇的基态结构而言,没有Eu原子陷入笼中.这和SinEu以及其它过渡金属掺杂半导体团簇的生长模式不同.除GeEu团簇外,GenEu(n=2-13)团簇的磁矩均为7μB.团簇的总磁矩与Eu原子的4f轨道磁矩基本相等.Ge、Eu原子间的电荷转移以及Eu原子的5d、6p和6s间的轨道杂化可以增强Eu原子的局域磁矩,却不能增强团簇总磁矩.  相似文献   

12.
The structures, relative stabilities, and electronic properties of size-selective single Hf-encapsulated germanium caged clusters ( n = 9-24) have been investigated in detail by density functional method for the first time. The dominant growth behavior of the solid nanocluster Hf@Ge n is based on a pentagonal prism instead of a hexagonal prism. Analogous to Hf@Si n , the encapsulated fullerene-like structure of Hf@Ge n begins to appear at 14, which is consistent with the prediction from the reactivity toward water in a recent experiment ( J. Phys. Chem. A 2007, 111, 42). Also, similar to Hf@Si n in the previous experimental observation ( Chem. Phys. Lett. 2003, 371, 490), the binding energy of Hf@Ge n is gradually increased up to the maximum at 16 and tends to be decreased subsequently, suggesting that stabilization of large germanium cages needs to be realized by doping more Hf atoms. The encapsulated Hf will obviously be moved away from the center of the germanium cage if the cluster size of Hf@Ge n is larger than 20. According to analysis of the electron density of size-selective Hf@Ge n , the covalent character in the germanium framework can be affected by the encapsulated position of Hf in the germanium cage. In addition, comparison between typical low-lying size-selective Hf@Ge n and Hf@Si n ( n = 12, 16 and 20) cages indicates that large-scaled divergence exists in stabilities, growth behaviors, electronic properties, and so forth.  相似文献   

13.
The ZrSi(n) (n=1-16) clusters with different spin configurations have been systematically investigated by using the density-functional approach. The total energies, equilibrium geometries, growth-pattern mechanisms, natural population analysis, etc., are discussed. The equilibrium structures of different-sized ZrSi(n) clusters can be determined by two evolution patterns. Theoretical results indicate that the most stable ZrSi(n) (n=1-7) geometries, except ZrSi3, keep the analogous frameworks as the lowest-energy or the second lowest-energy Si(n+1) clusters. However, for large ZrSi(n) (n=8-16) clusters, Zr atom obviously disturbs the framework of silicon clusters, and the localized position of the transition-metal (TM) Zr atom gradually varies from the surface insertion site to the concave site of the open silicon cage and to the encapsulated site of the sealed silicon cage. It should be mentioned that the lowest-energy sandwich-like ZrSi12 geometry is not a sealed structure and appears irregular as compared with other TM@Si12 (TM = Re,Ni). The growth patterns of ZrSi(n) (n=1-16) clusters are concerned showing the Zr-encapsulated structures as the favorable geometries. In addition, the calculated fragmentation energies of the ZrSi(n) (n=1-16) clusters manifest that the magic numbers of stabilities are 6, 8, 10, 14, and 16, and that the fullerene-like ZrSi16 is the most stable structure, which is in good agreement with the calculated atomic binding energies of ZrSi(n) (n=8-16) and with available experimental and theoretical results. Natural population analysis shows that the natural charge population of Zr atom in the most stable ZrSi(n) (n=1-16) structures exactly varies from positive to negative at the critical-sized ZrSi8 cluster; furthermore, the charge distribution around the Zr atom appears clearly covalent in character for the small- or middle-sized clusters and metallic in character for the large-sized clusters. Finally, the properties of frontier orbitals and polarizabilities of ZrSi(n) are also discussed.  相似文献   

14.
The electronic properties of germanium and tin clusters containing a transition- or lanthanide-metal atom from group 3, 4, or 5, MGe(n) (M = Sc, Ti, V, Y, Zr, Nb, Lu, Hf, and Ta) and MSn(n) (M = Sc, Ti, Y. Zr, and Hf), were investigated by anion photoelectron spectroscopy at 213 nm. In the case of the group 3 elements Sc, Y, and Lu, the threshold energy of electron detachment of MGe(n)(-) exhibits local maxima at n = 10 and 16, while in the case of the group 4 elements Ti, Zr, and Hf, it exhibits a local minimum only at n = 16, associated with the presence of a small bump in the spectrum. A similar behavior is observed for MSn(n)(-) around n = 16, and these electronic characteristics of MGe(n) and MSn(n) are closely related to those of MSi(n). Compared to MSi(n), however, the larger cavity size of a Ge(n) cage allows metal atom encapsulation at a smaller size n. A cooperative effect between the electronic and geometric structures of clusters with a large cavity of Ge(16) or Sn(16) is discussed together with the results of experiments that probe their geometric stability via their reactivity to H(2)O adsorption.  相似文献   

15.
The equilibrium geometric structures, stabilities, and electronic properties of bimetallic Au(n)Cs (n = 1-10) and pure gold Au(n) (n ≤ 11) clusters have been systematically investigated by using density functional theory with meta-generalized gradient approximation. The optimized geometries show that one Au atom capped on Au(n-1)Cs structures and Cs atom capped Au(n) structures for different sized Au(n)Cs (n = 1-10) clusters are two dominant growth patterns. Theoretical calculated results indicate that the most stable isomers have three-dimensional structures at n = 4 and 6-10. Averaged atomic binding energies, fragmentation energies, and second-order difference of energies exhibit a pronounced even-odd alternations phenomenon. The same even-odd alternations are found in the highest occupied-lowest unoccupied molecular orbital gaps, vertical ionization potential, vertical electron affinity, and hardnesses. In addition, it is found that the charge in corresponding Au(n)Cs clusters transfers from the Cs atom to the Au(n) host in the range of 0.851-1.036 electrons.  相似文献   

16.
原子团簇Ge_7的结构与稳定性   总被引:2,自引:0,他引:2  
用分子图形软件设计出多种锗原子团簇Ge7的模型,并进行B3LYP密度泛函几何构型优化和振动频率计算,得到8种稳定的同分异构体结构。在锗原子团簇中,大部分原子以三、四、五配位成键。根据分子的总能量,最稳定的Ge7构型为D5h构型。Ge7稳定结构中高配位原子越多,构型越稳定。  相似文献   

17.
The neutral and charged YbSi(n) (n = 1-6) clusters considering different spin configurations have been systematically investigated by using the relativistic density functional theory with generalized gradient approximation. The total bonding energies, equilibrium geometries, Mulliken populations (MP), Hirshfeld charges (HC), fragmentation energies, and highest occupied molecular orbital-lowest unoccupied molecular orbital (HOMO-LUMO) gaps are calculated and discussed. The optimized geometries indicate that the most stable YbSi(n) (n = 1-6) clusters keep basically the analogous frameworks as the low-lying Si(n)(+1) clusters, while the charged species deviate from their neutral counterparts, and that the doped Yb tends to occupy the substitutional site of the neutral and charged YbSi(n) isomers. The relative stabilities are investigated in terms of the calculated fragmentation energies, exhibiting enhanced stabilities for the remarkably stable neutral and charged YbSi2 and YbSi5 clusters. Furthermore, the calculated MP and HC values show that the charges of the neutral and charged YbSi(n) clusters transfer from the Yb atom to Si(n) atoms and the Yb atom acts as an electron donor, and that the f orbitals of the Yb atom in the neutral and charged YbSi(n) clusters behave as core without involvement in chemical bonding. The calculated HOMO-LUMO gaps indicate that the YbSi2 and YbSi4+ clusters have stronger chemical stabilities. Comparisons of the Yb-doped Si(n) (n = 1-6) with available theoretical results of transition-metal-doped silicon clusters are made. The growth pattern is investigated also.  相似文献   

18.
Reactions of nine-atom deltahedral clusters of germanium with Ni(COD)2 and/or Ni(PPh3)2(CO)2 in ethylenediamine yielded the Ni-centered heteroatomic 10-atom clusters [Ni@(Ge9Ni-CO)]2- and [Ni@(Ge9Ni-en)]3-, as well as the empty 10-atom heteroatomic cluster [Ge9Ni-CO]3-. A ligand exchange reaction between [Ni@(Ge9Ni-CO)]2- and potassium phenylacetylide produced the organically functionalized species [Ni@(Ge9Ni-CCPh)]3-. The empty cluster [Ge9Ni-CO]3- is a bicapped square antiprism where one of the capping vertexes is the nickel atom. The other three clusters are tricapped trigonal prisms where an additional 10th vertex of monoligated nickel caps a triangular base of the trigonal prism. As a result of this, that base opens up, and the distances within it become nonbonding. This ensures that all atoms of the cluster are equidistant from the central nickel atom, i.e., the cluster is very close to spherical. All species were structurally characterized in crystalline compounds with [K-(2,2,2-crypt)]+ countercations. They were also characterized in solution by mass spectrometry, IR, and 13C NMR.  相似文献   

19.
Structures of the beryllium-centered germanium clusters Be@Ge(n)(z) (n = 8, 7, 6; z = -4, -2, 0, +2) have been investigated by density functional theory to provide some insight regarding the smallest metal cluster that can encapsulate an interstitial atom. The lowest energy structures of the eight-vertex Be@Ge(8)(z) clusters (z = -4, -2, 0, +2) all have the Be atom at the center of a closed polyhedron, namely, a D(4d) square antiprism for Be@Ge(8)(4-), a D(2d) bisdisphenoid for Be@Ge(8)(2-), an ideal O(h) cube for Be@Ge(8), and a C(2v) distorted cube for Be@Ge(8)(2+). The Be-centered cubic structures predicted for Be@Ge(8) and Be@Ge(8)(2+) differ from the previously predicted lowest energy structures for the isoelectronic Ge(8)(2-) and Ge(8). This appears to be related to the larger internal volume of the cube relative to other closed eight-vertex polyhedra. The lowest energy structures for the smaller seven- and six-vertex clusters Be@Ge(n)(z) (n = 7, 6; z = -4, -2, 0, +2) no longer have the Be atom at the center of a closed Ge(n) polyhedron. Instead, either the Ge(n) polyhedron has opened up to provide a larger volume for the Be atom or the Be atom has migrated to the surface of the polyhedron. However, higher energy structures are found in which the Be atom is located at the center of a Ge(n) (n = 7, 6) polyhedron. Examples of such structures are a centered C(2v) capped trigonal prismatic structure for Be@Ge(7)(2-), a centered D(5h) pentagonal bipyramidal structure for Be@Ge(7), a centered D(3h) trigonal prismatic structure for Be@Ge(6)(4-), and a centered octahedral structure for Be@Ge(6). Cluster buildup reactions of the type Be@Ge(n)(z) + Ge(2) → Be@Ge(n+2)(z) (n = 6, 8; z = -4, -2, 0, +2) are all predicted to be highly exothermic. This suggests that interstitial clusters having an endohedral atom inside a bare post transition element polyhedron with eight or fewer vertices are less than the optimum size. This is consistent with the experimental observation of several types of 10-vertex polyhedral bare post transition element clusters with interstitial atoms but the failure to observe such clusters with external polyhedra having eight or fewer vertices.  相似文献   

20.
Structural Chemistry - In the present study electronic structure and stabilities of cationic gold-doped germanium clusters, AuGen (n?=?1 to 20), and their assemblies have been...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号