共查询到20条相似文献,搜索用时 15 毫秒
1.
Jing Han Yap Tran Thinh To Stefan Adams 《Journal of Polymer Science.Polymer Physics》2015,53(4):270-279
To deepen the understanding of morphology evolution in bulk heterojunction P3HT:PCBM organic photovoltaics system by thermal treatment, domain‐size‐dependent interfacial energies were first determined by coarse‐grained molecular dynamics modelling and then used in Monte Carlo simulations of the morphology evolution. Thereby initial conditions associated with optimal interfacial surface area, continuous volume, as well as domain sizes, and spatial distributions of the phase separated domains were identified. In line with earlier studies, a 1:1 P3HT:PCBM blend ratio is found to exhibit the most efficient morphology for exciton dissociation and charge transport. Our simulations reveal that preseeding of P3HT crystal at the anode side prior to the annealing process will be instrumental to pin the formation of P3HT at the favorable electrode especially when seeding exceeds a threshold of 10% surface coverage, whereas denser seeding patterns beyond the threshold did not improve the active layer morphology further. The observed trilayer depth profile (in the absence of preseeded P3HT crystals) implies that the commonly used thickness 100 nm of the active layer is not ideal for ensuring that donor and acceptor phases dominate at opposite ends of the active layer. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2015 , 53, 270–279 相似文献
2.
Alexandre Rodrigues M. Cidália R. Castro Andreia S.F. Farinha Manuel Oliveira João P.C. Tomé Ana V. Machado M. Manuela M. Raposo Loic Hilliou Gabriel Bernardo 《Polymer Testing》2013
The thermal stability of poly(3-hexylthiophene) (P3HT) in its molten state was investigated in air and nitrogen atmospheres under no illumination conditions, with the aim of testing the feasibility of processing it using polymer melt techniques. A large set of different experimental characterization techniques was used including thermogravimetric analysis (TGA), rotational rheometry, infrared spectroscopy (FTIR-ATR), proton nuclear magnetic resonance spectroscopy (1H-NMR), gel permeation chromatography (GPC), UV-Vis and fluorescence spectroscopy. The results obtained strongly suggest that the processing of P3HT in its molten state is possible, without noticeable degradation, if carried out under nitrogen atmosphere and if the processing (residence) times are relatively short. Conversely, as expected, in a normal air atmosphere P3HT degrades rapidly at temperatures above its melting point. The effect of PCBM on the thermal stability of P3HT:PCBM blends in the molten state was also studied using TGA, and in air atmosphere PCBM is shown to delay oxidation. 相似文献
3.
Fatma Demir Niko Van den Brande Bruno Van Mele Sabine Bertho Dirk Vanderzande Jean Manca Guy Van Assche 《Journal of Thermal Analysis and Calorimetry》2011,105(3):845-849
Defining appropriate annealing temperatures and times is vitally important for increasing the efficiency of bulk heterojunction
solar cells by favoring the crystallinity of the polymer-fullerene blend components. In order to better understand the annealing
process, the isothermal crystallization of poly(3-hexyl thiophene) (P3HT) and [6,6]-phenyl C61-butyric acid methyl ester (PCBM) blend investigated by means of rapid heating cooling calorimetry (RHC). Isothermal crystallization
experiments at temperatures in between the glass transition and melting, within the temperature range of 70–150 °C, can successfully
be performed since RHC permits cooling at a sufficiently high rate in order to prevent crystallization during cooling. Crystallization
isotherms were determined from the subsequent melting behavior of the blend. They were measured for a wide set of annealing
temperatures and times, and the evolution of the crystallization rate with temperature is compared for annealing from the
glassy state and from the melt state. 相似文献
4.
Improved photovoltaic performance of P3HT:PCBM cells by addition of a low band-gap oligomer 总被引:1,自引:0,他引:1
The introduction of a low band-gap oligomer, oligo(benzo[1,2,5]thiadiazole-alt-3,3'-dihexylquaterthiophene) (BT4T) improved the performance of P3HT:PCBM bulk heterojunction organic photovoltaic cells due to improved UV-vis absorption and increased P3HT crystallinity. 相似文献
5.
退火处理提高P3HT:PCBM聚合物太阳能电池光伏性能 总被引:2,自引:0,他引:2
利用旋转涂膜方法制备了以P3HT:PCBM为有源层的聚合物太阳能电池, 器件结构为ITO/PEDOT:PSS/P3HT:PCBM/Al(氧化铟锡导电玻璃/聚二氧乙基噻吩:聚对苯乙烯磺酸/聚三已基噻酚:富勒烯衍生物/铝),研究了退火温度对聚合物太阳能电池性能的影响. 实验发现: 聚合物薄膜经过120 °C退火10 min处理后, 开路电压(Voc)达到0.64 V, 短路电流密度(Jsc)为10.25 mA·cm-2, 填充因子(FF) 38.1%, 光电转换效率(PCE)达到2.00%. 为了讨论其内在机制, 对不同退火条件下聚合物薄膜进行了各种表征. 从紫外-可见吸收光谱中发现, 退火处理使P3HT在可见光范围内吸收加强且吸收峰展宽, 特别是在560和610 nm处的吸收强度明显增大; X射线衍射(XRD)结果表明, 120 °C退火后P3HT在(100)晶面上的衍射强度是未退火薄膜的2.8倍, 有利于光生载流子的输运; 原子力显微镜(AFM)研究结果表明, 退火显著增大了P3HT与PCBM的相分离程度, 提高了激子解离的几率; 傅里叶变换红外(FTIR)光谱验证了退火并没有引起聚合物材料物性的变化. 相似文献
6.
Gold-silver alloy nanoparticles can be produced by pulsed laser irradiation of bulk alloy metals in water, preserving the stoichiometry of the target metals. 相似文献
7.
Laser ablation of a solid target material in a liquid environment provides with an easy, straightforward and environmentally
friendly method for nanoparticles synthesis as well as with the unique possibility of directly controlling the type of the
nanoparticles surface ligands through the liquid choice. In this paper, laser ablation (10.4 ps, 1064 nm and 50 kHz) of a
bulk silver target in deionized water, was carried out for nanoparticles synthesis. The synthesised nanoparticles are either
pure Ag or A2O3 or a mixture of the two materials. Their size distribution follows log-normal function with a statistical median diameter
of ≈5 nm. The nanoparticles colloidal solutions were directly mixed after synthesis, with the polymer solution poly(3,4-ethylenedioxythiophene):poly(4-styrenesulfonate)
(PEDOT:PSS) for the formation of polymer-nanoparticles nanocomposite. The nanoparticles readily form bonds with the sulphur
atom of PEDOT which results in their uniform distribution within the polymer matrix as well as in a replacement by the nanoparticles
of the PSS− as the counteranions to the PEDOT+. These effects result in the reduction of the effective insulation of the polymer blend particles by the insulating PSS and
furthermore in the electrical conductivity of the nanocomposite becoming higher (by ∼1.5 times) as compared with that of the
pure polymer. 相似文献
8.
利用旋转涂膜方法制备了以P3HT:PCBM为有源层的聚合物太阳能电池, 器件结构为ITO/PEDOT:PSS/P3HT:PCBM/Al(氧化铟锡导电玻璃/聚二氧乙基噻吩:聚对苯乙烯磺酸/聚三已基噻酚:富勒烯衍生物/铝),研究了退火温度对聚合物太阳能电池性能的影响. 实验发现: 聚合物薄膜经过120 °C退火10 min处理后, 开路电压(Voc)达到0.64 V, 短路电流密度(Jsc)为10.25 mA·cm-2, 填充因子(FF) 38.1%, 光电转换效率(PCE)达到2.00%. 为了讨论其内在机制, 对不同退火条件下聚合物薄膜进行了各种表征. 从紫外-可见吸收光谱中发现, 退火处理使P3HT在可见光范围内吸收加强且吸收峰展宽, 特别是在560和610 nm处的吸收强度明显增大; X射线衍射(XRD)结果表明, 120 °C退火后P3HT在(100)晶面上的衍射强度是未退火薄膜的2.8倍, 有利于光生载流子的输运; 原子力显微镜(AFM)研究结果表明, 退火显著增大了P3HT与PCBM的相分离程度, 提高了激子解离的几率; 傅里叶变换红外(FTIR)光谱验证了退火并没有引起聚合物材料物性的变化. 相似文献
9.
选择含有噻吩环的富勒烯衍生物([6,6]-噻吩基-C61-丁酸甲酯(TCBM-Cn,n代表在噻吩环5位的烷基链碳原子数))作为聚3-己基噻吩(P3HT)和[6,6]-苯基-C61-丁酸甲酯(PCBM)共混体系的相容剂,讨论了结晶能力不同的TCBM-Cn分子对共混体系相容性和P3HT结晶行为的影响.当使用强结晶性的相容剂TCBM-C0时,虽然不能完全抑制PCBM的聚集,但由于分子中噻吩环结构的存在,少量的相容剂即可提高P3HT的结晶度.而对于弱结晶性的相容剂TCBM-C6,虽然可以完全抑制PCBM的聚集,但是只有当其含量超过PCBM时,最终才能达到促进P3HT结晶的目的. 相似文献
10.
热处理对P3HT与PCBM共混体系光电性能的影响 总被引:1,自引:0,他引:1
The effect of annealing treatment on the photoelectric properties of poly(3-hexylthiophene) (P3HT):[6,6]-phenyl-C61-butyric acid methyl ester (PCBM) was analyzed by UV-Vis absorption spectroscopy, photoluminescence (PL) spectroscopy, X-ray diffraction, and solar cell performance. The UV-Vis absorption peaks of P3HT:PCBM thin filmshowed enhancement and a red-shift after thermal annealing. PL and XRD peak intensities increased by annealing treatment. A solar cell based on the blend of P3HT:PCBM was fabricated, and the device performance was significantly improved by thermal annealing. For devices heat-treated at 130 益, open circuit voltage of 0.55 V, short circuit current density of 9.87 mA·cm-2, fill factor of 60.1% and power conversion efficiency (PCE) of 3.26% were achieved under 100 mW·cm-2 air-mass 1.5 solar simulator illumination. 相似文献
11.
Amendola V Polizzi S Meneghetti M 《Langmuir : the ACS journal of surfaces and colloids》2007,23(12):6766-6770
Stable colloidal solutions of free silver nanoparticles (AgNPs) have been synthesized without reducing and stabilizing agents in pure acetonitrile and N,N-dimethylformamide by laser ablation of the bulk metal. Synthesis in tetrahydrofuran and dimethyl sulfoxide gave nanoparticles surrounded by a carbon shell or included in a carbon matrix. Mie theory for free and core@shell spheres accounts for the UV-vis spectra of the nanoparticles and allows their structural characterization. Transmission electron microscopy confirms the structure of the synthesized AgNPs. It is shown that free nanoparticles can be immediately functionalized, without further treatments, in the organic solvent used for the synthesis with molecules which are soluble in the same solvent. 相似文献
12.
Mardis Mardiansyah Takada Noriharu Machmudah Siti Wahyudiono Sasaki Koichi Kanda Hideki Goto Motonobu 《Research on Chemical Intermediates》2016,42(5):4581-4590
Research on Chemical Intermediates - Nickel nanoparticles with various structures were synthesized by a pulsed laser ablation process in liquid CO2 at 17 °C and 5.2 MPa. A... 相似文献
13.
S.?V.?Starinskiy V.?S.?Sulyaeva Yu.?G.?Shukhov A.?G.?Cherkov N.?I.?Timoshenko A.?V.?Bulgakov A.?I.?Safonov
We present the results of studying the structure of gold nanoparticles synthesized on the silicon surface by two techniques: pulsed laser ablation and magnetron sputtering. The surface morphology is examined by scanning electron microscopy. The structure of the obtained gold nanoparticles is analyzed by transmission electron microscopy and electron diffraction. It is shown that nanoparticle sizes and crystal structures can be controlled by their thermal annealing. Mechanisms occurring during annealing of thin gold films and also their effect on the formation of nanoparticles with different structures are investigated. 相似文献
14.
The surface composition of poly(3-hexylthiophene-2,5-diyl) and fullerene derivative [6,6]-phenyl-C61-butyric acid methyl ester (P3HT/PCBM) blend films could be changed by controlling the film formation process via using mixed solvents with different evaporation rates. The second solvent, with a higher boiling point than that of the first solvent and much better solubility for PCBM than P3HT, is chosen to mix with the first solvent with a lower boiling point and good solubility for both PCBM and P3HT. The slow evaporation rate of the second solvent provides enough time for PCBM to diffuse upwards during the solvent evaporation. Thus, the weight ratio of PCBM and P3HT (m PCBM/m P3HT) at surface of the blend films was varied from ca. 0.1 to ca. 0.72, i.e., it increases about seven times by changing from single solvent to mixed solvents. Meanwhile, the mixed solvents were in favor to form P3HT naonofiber network and enhance phase separation of P3HT/PCBM blend films. As a result, the power conversion efficiency of the device from mixed solvents with slow evaporation process was about 1.5 times of the one from single solvents. 相似文献
15.
We prepared the polymer solar cell based on poly(3-hexylthiophene)(P3HT)/fullerene derivative PCBM(PCBM=[6,6]-phenyl-C61-butyric acid methyl ester) heterojunction and investigated the irradiation intensi- ty-dependent charge recombination dynamics of heterojunction employing nanosecond transient absorption spectroscopy with bias light so as to simulate the photophysical process in heterojunction when the photovoltaic device is on operation. The experimental data exhibit that the yield of free charges gradually decreases and the loss of mobile carriers originated from bimolecular recombination simultaneously increases as the irradiation intensity gradually enhances. This indicates that the polymer solar cell is much suitably used at a low irradiation intensity. 相似文献
16.
Phase separation in the donor‐acceptor blend poly(3‐hexylthiophene‐2,5‐diyl):[6,6]‐phenyl‐C61‐butyric acid methyl ester (P3HT:PCBM) during evaporation of a solvent using coarse‐grained molecular dynamics simulations is studied here. To this end, an equilibrated P3HT:PCBM:solvent mixture is placed in an elongated simulation box, after which solvent molecules are removed at regular time intervals from a region above the film. Three often‐used solvents are considered: chloroform (CFM), chlorobenzene (CLB), and orthodichlorobenzene (oDCB). The coarse‐grained solvent–solvent interaction parameters are tuned to reproduce the atmospheric boiling temperatures, while the PCBM–solvent interaction parameters are tuned to reproduce the PCBM solubilities. Other parameters are taken from the literature. During evaporation, the formation of a crust that is depleted of solvent, in which aggregation of P3HT and PCBM occurs, is observed. In agreement with experiment, the top region of the dry film is rich in PCBM for the cases of CLB and oDCB, and rich in P3HT for the case of CFM, while the very top layer of the film is always rich in P3HT. This vertical separation is ascribed to a competition between the tendency of P3HT to move to the surface due to its low surface energy and the different tendencies of PCBM to be dragged along to the surface by the evaporating solvent depending on its solubility. Also in agreement with experiment, the P3HT–PCBM interface area is larger for CLB and oDCB than for CFM. For CLB and oDCB, an indication for a spinodal P3HT–PCBM decomposition starting from the top and bottom surface is found, whereas for CFM the phase separation appears to be initiated in the bulk of the film.
17.
18.
Tsoi WC James DT Kim JS Nicholson PG Murphy CE Bradley DD Nelson J Kim JS 《Journal of the American Chemical Society》2011,133(25):9834-9843
The nature of main in-plane skeleton Raman modes (C=C and C-C stretch) of poly(3-hexylthiophene) (P3HT) in pristine and its blend thin films with [6,6]-phenyl-C(61)-butyric acid methyl ester (PCBM) is studied by resonant and nonresonant Raman spectroscopy and Raman simulations. Under resonant conditions, the ordered phase of P3HT with respect to its disordered phase is identified by (a) a large shift in the C=C mode peak position to lower wavenumber (~21 cm(-1) shift), (b) a narrower fwhm of the C=C mode (~9 cm(-1) narrower), (c) a larger intensity of the C-C mode relative to the C=C mode (~56% larger), and (d) a very small Raman dispersion (~5 cm(-1)) of the C=C mode. The behavior of the C=C and C-C modes of the ordered and disordered phases of P3HT can be explained in terms of different molecular conformations. The C=C mode of P3HT in P3HT:PCBM blend films can be reproduced by simple superposition of the two peaks observed in different phases of P3HT (ordered and disordered). We quantify the molecular order of P3HT after blending with PCBM and the subsequent thermal annealing to be 42 ± 5% and 94 ± 5% in terms of the fraction of ordered P3HT phase, respectively. The increased molecular order of P3HT in blends upon annealing correlates well with enhanced device performance (J(SC), -4.79 to -8.72 mA/cm(2) and PCE, 1.07% to 3.39%). We demonstrate that Raman spectroscopy (particularly under resonant conditions) is a simple and powerful technique to study molecular order of conjugated polymers and their blend films. 相似文献
19.
以聚3-己基噻吩(P3HT)为给体、[6,6]-苯基-C61-丁酸甲酯(PCBM)为受体的光伏体系作为研究对象,采用溶剂退火的后处理方法制备薄膜样品,利用紫外-可见(UV-Vis)吸收光谱、原子力显微镜(AFM)、X射线衍射(XRD)等测试手段分别对共混膜样品的形貌和结构进行表征,同时利用熵值统计方法对AFM形貌图像进行分析处理.并在此基础上制备太阳能电池器件,其结构为氧化铟锡导电玻璃/聚3,4-乙撑二氧噻吩:聚苯乙烯磺酸盐/聚3-己基噻吩:[6,6]-苯基-C61-丁酸甲酯/金属铝(ITO/PEDOT:PSS/P3HT:PCBM/Al),研究了给受体共混比例(质量比)对活性层薄膜以及电池性能的影响.结果表明,受体PCBM含量的增加会影响P3HT给体相的有序结晶,当给受体比例为1:1时,活性层薄膜具有较宽的紫外-可见吸收特征,且具有较好的相分离和结晶度,基于该样品制备的电池器件其光电转换效率达到三种比例的最大值(2.77%).表明退火条件下,改变给受体比例可以影响活性层的微纳米结构而最终影响电池的光电转换效率. 相似文献
20.
Qi Wu Mithun Bhattacharya Levi M. J. Moore Sarah E. Morgan 《Journal of Polymer Science.Polymer Physics》2014,52(23):1511-1520
Systematically varied annealing, encapsulation, and solvent vapor treatments are conducted to produce stable OPV devices with controlled film morphology and high performance when produced in air. Active layer films are analyzed by AFM, nanomechanical mapping, UV–vis spectroscopy, and XRD. Devices prepared with isopropanol solvent vapor annealing (SVA) combined with thermal annealing (TA) show the highest environmental resistance and performance. Such devices yield average PCE of 3.3%, with stability to atmospheric exposure of up to 60 min prior to encapsulation. Encapsulated devices exposed to the laboratory environment for 30 days exhibit a decrease in PCE of ~15%. On application of a second TA step PCE is recovered to over 90% of the original value. The unprecedented air stability of the cells is attributed to the formation of an active layer with a stable, favorable morphology during the SVA process, which is associated with lower oxygen content films. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2014 , 52, 1511–1520 相似文献