首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The influence of temperature (T 298-623 K) at constant pressure (P 200 bar) on the structure of aqueous solutions LiBr:nH2O (n = 15, 8, 4) was studied using the method of integral equations. In the less concentrated solutions, heating results in disappearance of the tetrahedral ordering of solvent molecules; in the more concentrated soltion, this ordering is lacking even at 298 K. In the systems LiBr:15H2O and LiBr:8H2O, with heating, the hydrogen bonding and the coordinating power of the cation get considerably weakened, the amount of contact ion pairs grows, and the amount of hydration-separated ion pairs decreases. On heating, the H bonds between the anion and water molecules of its first coordination sphere are largely ruptured. At the same time, the structuring of the LiBr:4H2O solution under extreme conditions has certain specific features: with increasing temperature, the intermolecular hydrogen bonding becomes stronger, and the amount of hydration-separated ion pairs increases.  相似文献   

2.
One new single crystal [Th(NO3)2(H2O)6](CB6)(NO3)2·2H2O was prepared using Th(NO3)4·4H2O and cucurbit[6]uril (CB6) as reagents in HNO3 aqueous solution by slow evaporation. The coordination number of Th4+ is ten. Th4+ is coordinated with six monodentate water molecules and two symmetric bidentate chelating nitrate ions, while other two nitrate ions act as the counterion anions. CB6 is a second-sphere ligand which is hydrogen bonded to the water molecules of [Th(NO3)2(H2O)6]2+. Besides, there are also two free water molecules in the crystal system.  相似文献   

3.
Peculiarities of structure formation of aqueous LiCl solutions at different salt : water molar ratios (LiCl : n H2O, n = 3.15, 8.05, 14.90) under conditions of isobaric heating (p = 100 bar, T = 298, 323—523 K, T = 50 K) were studied by the method of integral equations. Heating of LiCl : 14.90H2O solution was found to lead to disappearance of tetrahedral ordering of solvent molecules, appreciable weakening of the coordination abilities of both ions, and to an increase of the number of contact ion pairs and a decrease of the number of solvent-separated ion pairs. For the LiCl : 8.05H2O system, the tetrahedral structure of the solvent disappears at a lower temperature and heating has a less pronounced effect on the coordination and associative abilities of the ions. In the LiCl : 3.15H2O solution, tetrahedral ordering of the solvent molecules disappears at 298 K and the number of contact ion pairs decreases as temperature increases. Other structural changes in this system upon heating are similar to those found for the LiCl : 14.90H2O and LiCl : 8.05H2O solutions.  相似文献   

4.
Two 1:1 proton‐transfer complexes of sulfobenzoic acids with aromatic amines, namely 4‐[2‐(4‐pyridyl)ethenyl]pyridinium 2‐carboxybenzenesulfonate, C12H11N2+·C7H5O5S, (I), and 1,10‐phenanthrolin‐1‐ium 4‐carboxybenzenesulfonate dihydrate, C12H9N2+·C7H5O5S·2H2O, (II), have very different hydrogen‐bonding patterns compared with reported organic sulfobenzoic acid complexes. In (I), two cations and two anions form a four‐molecule loop, in which π–π interactions occur. In (II), the anions and water molecules form a three‐dimensional hydrogen‐bonding network, while the cations only act as pendant components. The water molecules play a central role in the formation of the abundant hydrogen‐bonding architecture in (II). The relative poorness and richness of hydrogen bonds in (I) and (II), respectively, give rise to novel hydrogen‐bonding patterns.  相似文献   

5.
Aqueous solutions of ionic liquids are of special interest, due to the distinctive properties of ionic liquids, in particular, their amphiphilic character. A better understanding of the structure–property relationships of such systems is hence desirable. One of the crucial molecular‐level interactions that influences the macroscopic behavior is hydrogen bonding. In this work, we conduct molecular dynamics simulations to investigate the effects of ionic liquids on the hydrogen‐bond network of water in dilute aqueous solutions of ionic liquids with various combinations of cations and anions. Calculations are performed for imidazolium‐based cations with alkyl chains of different lengths and for a variety of anions, namely, [Br]?, [NO3]?, [SCN]?, [BF4]?, [PF6]?, and [Tf2N]?. The structure of water and the water–ionic liquid interactions involved in the formation of a heterogeneous network are analyzed by using radial distribution functions and hydrogen‐bond statistics. To this end, we employ the geometric criterion of the hydrogen‐bond definition and it is shown that the structure of water is sensitive to the amount of ionic liquid and to the anion type. In particular, [SCN]? and [Tf2N]? were found to be the most hydrophilic and hydrophobic anions, respectively. Conversely, the cation chain length did not influence the results.  相似文献   

6.
The crystal structure determination of the title compounds showed that they are isomorphous, revealing the general formula [M(H2O)4(py)2](sac)2·4H2O. Their structures are built up of [M(H2O)4(py)2]2+ cations, saccharinato anions and non-coordinated water molecules. The metal atom lies on the inversion center and is octahedrally coordinated by four water oxygens and two pyridine nitrogen atoms. The crystal structure packing is achieved through the hydrogen bonds of Ow⋯Ow, Ow⋯O and Ow⋯N type. Coordinated water molecules are hydrogen bonded to non-coordinated ones at the same time participating in hydrogen bonding with carbonyl oxygen and nitrogen atom from the saccharinato anions. Non-coordinated water molecules participate in hydrogen bonding with the oxygen atoms belonging to the saccharinato CO and SO2 groups. The hydrogen bond network between the oxygen atoms belonging to the SO2 group of the saccharinato anions and one of the non-coordinated water molecules (OW3) constructs the centrosymmetric cavity in the structure.  相似文献   

7.
Covalent organic cages have potential applications in molecular inclusion/recognition and porous organic crystals. Bridging arene units with sp3 atoms enables facile construction of rigid isolated internal vacancies, and various prismatic arene cages have been synthesized by kinetically controlled covalent bond formation. However, the synthesis of a tetrahedral one, which requires twice as much bond formation as prismatic ones, has been limited to a thermodynamically controlled dynamic SNAr reaction, and this reversible covalent bond formation made the resulting cage product chemically unstable. Here we report the Rh-catalyzed high-yielding and highly 1,3,5-selective room temperature [2+2+2] cycloaddition of push-pull alkynes and its application to the synthesis of chemically stable aryl ether cages of various shapes and sizes, including prismatic and tetrahedral forms. These aryl ether cages are highly crystalline and intertwine with each other to form regular packing structures. Some aryl ether cages encapsulated isolated water molecules in their hydrophobic cavity by hydrogen bonding with the multiple ester moieties.  相似文献   

8.
Infrared spectra of esters in water-alcohol mixtures, with or without added salts, indicate the formation of 1:1 or 1:2 complexes through hydrogen bonding between the ester carbonyl group and the proton donor molecules of the solvent, as well as the formation of a donor-acceptor complexes with Li+ or Ba2+. These complexes facilitate nucleophilic attack at the carbon of the carbonyl group by hydroxyl anions. Depending on the water content of the mixture, the addition of LiCIO4 increases or decreases the rate constant of the reaction. The displacement of equilibria between different entities explains a higher rate constant in water-tert-butanol than in water-methanol mixtures of the alkaline hydrolysis of ethyl acetate.  相似文献   

9.
拉曼光谱研究CaCl2和MgCl2对水结构的影响   总被引:1,自引:0,他引:1  
测试了CaCl2、MgCl2溶液(浓度小于1.0 mol•L-1)的OH伸缩振动区域的拉曼光谱.对所得到的拉曼光谱进行了计算机去卷积处理,并由此计算了不同溶液中水的四面体结构的百分数.研究表明,CaCl2、MgCl2对水中四面体结构有破坏作用,且CaCl2的破坏作用比MgCl2大.与17O核磁共振结果对比与分析,认为CaCl2、MgCl2虽然破坏水中的四面体结构,但通过促进含氢键数少的水分子形成氢键,故从总体上促进水的缔合结构.  相似文献   

10.
Effect of temperature and water content on the structure of 1,2-propanediol (12PD) and 1,3-propanediol (13PD) in the liquid phase has been studied by Fourier-transform near-infrared (FT-NIR) spectroscopy. In addition, the spectra of both diols in CCl4 solutions at various concentrations were measured. The experimental spectra were analyzed by two-dimensional (2D) correlation approach and chemometric methods. The present results give no evidence that 12PD form the intramolecular hydrogen bonding. In contrast, significant amounts of 13PD molecules in diluted CCl4 solution is involved in the intramolecular hydrogen bonding. At higher concentrations the intramolecular hydrogen bonds are broken and replaced by the intermolecular ones. The structure of pure liquid propanediols is determined by the intermolecular hydrogen bonding. Unlike for monohydroxyl alcohols, addition of water to propanediols leads to faster temperature-induced breaking of the hydrogen-bonded associates. However, variation of water content at constant temperature does not influence the structure of both diols. In this respect behavior of propanediols is similar to that of the monohydric alcohols. The molecules of water in the mixtures are hydrogen bonded to the diols and act as a double proton donor. This bonding appears to be stronger than that in bulk water.  相似文献   

11.
In xanthinium nitrate hydrate [systematic name: 2,6‐dioxo‐1,2,3,6‐tetrahydro‐9H‐purin‐7‐ium nitrate monohydrate], C5H5N4O2+·NO3·H2O, (I), and xanthinium hydrogen sulfate hydrate [systematic name: 2,6‐dioxo‐1,2,3,6‐tetrahydro‐9H‐purin‐7‐ium hydrogen sulfate monohydrate], C5H5N4O2+·HSO4·H2O, (II), the xanthine molecules are protonated at the imine N atom with the transfer of an H atom from the inorganic acid. The asymmetric unit of (I) contains a xanthinium cation, a nitrate anion and one water molecule, while that of (II) contains two crystallographically independent xanthinium cations, two hydrogen sulfate anions and two water molecules. A pseudo‐quadruple hydrogen‐bonding motif is formed between the xanthinium cations and the water molecules via N—H...O and O—H...O hydrogen bonds in both structures, and leads to the formation of one‐dimensional polymeric tapes. These cation–water tapes are further connected by the respective anions and aggregate into two‐dimensional hydrogen‐bonded sheets in (I) and three‐dimensional arrangements in (II).  相似文献   

12.
The title compound, Rb2[Co(H2O)6](C8H5O4)4·4H2O, consists of nearly regular octahedral [Co(H2O)6]2+ cations with the CoII cations on the inversion centre (special position 2a), Rb+ cations, hydrogen phthalate (Hpht) anions and disordered water molecules. The Rb+ cation is surrounded by nine O atoms from Hpht anions and water molecules, with a strongly deformed pentagonal–bipyramidal geometry and one apex split into three positions. The crystal packing is governed by numerous hydrogen bonds involving all water molecules and Hpht anions. In this way, layers parallel to the ab plane are formed, with the aromatic rings of the Hpht anions esentially directed along the c axis. While Hpht anions form the outer part of the layers, disordered water molecules and Rb+ cations alternate with [Co(H2O)6]2+ cations in the inner parts. The only interactions between the layers are van der Waals forces between the atoms of the aromatic rings. A search of the Cambridge Structural Database for coordination modes and types of hydrogen‐bonding interaction of the Hpht anion showed that, when uncoordinated Hpht anions are present, compounds with intermolecular hydrogen bonds are more numerous than compounds with intramolecular hydrogen bonds. For coordinated Hpht anions, chelating and bridging anions are almost equally common, while monodentate anions are relatively scarce. The same coordination modes appear for Hpht anions with or without intramolecular hydrogen bonds, although intramolecular hydrogen bonds are less common.  相似文献   

13.
The structural features of concentrated aqueous solutions of MeCl (Me = Li, Na, K, Rb; molar ratio [salt] : [water] = 1 : 15) at 293 K and 0.1 MPa were studied by the method of integral equations. The calculation results show that the disordering effect of the cation on the solvent structure grows in the order NaCl < KCl < RbCl (the number of free water molecules grows, and the content of tetrahedrally ordered molecules decreases). With LiCl, the changes in these parameters are maximal. In the systems containing Li+ and Na+ ions, the association parameter is lower than in pure water, whereas in the solutions with the K+ and Rb+ ions it is higher, in agreement with the concept of positive and negative hydration. It was suggested that, with increasing cationic radius, formation of hydrogen bonds between bulk water molecules becomes more preferential, and interactions between the anion and solvent molecules are weakened. On the contrary, the coordination number of the cation increases with its radius. In the examined series of solutions, the probability of formation of contact ion pairs grows considerably, and that of formation of hydration-separated ion pairs decreases.  相似文献   

14.
A near‐IR spectral study on pure water and aqueous salt solutions is used to investigate stoichiometric concentrations of different types of hydrogen‐bonded water species in liquid water and in water comprising the hydration shell of salts. Analysis of the thermodynamics of hydrogen‐bond formation signifies that hydrogen‐bond making and breaking processes are dominated by enthalpy with non‐negligible heat capacity effects, as revealed by the temperature dependence of standard molar enthalpies of hydrogen‐bond formation and from analysis of the linear enthalpy–entropy compensation effects. A generalized method is proposed for the simultaneous calculation of the spectrum of water in the hydration shell and hydration number of solutes. Resolved spectra of water in the hydration shell of different salts clearly differentiate hydrogen bonding of water in the hydration shell around cations and anions. A comparison of resolved liquid water spectra and resolved hydration‐shell spectra of ions highlights that the ordering of absorption frequencies of different kinds of hydrogen‐bonded water species is also preserved in the bound state with significant changes in band position, band width, and band intensity because of the polarization of water molecules in the vicinity of ions.  相似文献   

15.
The structural and thermodynamic properties of hydration of methylamine and methyl-ammonium ion were investigated by the integral equations method in the RISM approximation. According to calculations, the average number of water molecules in the first hydration shell of CH3 group is 14.4 for aqueous methylamine and 12.7 for aqueous methylammonium solution. The first hydration shells of the NH2 group of methylamine and the NH3 + group of methylammonium ion contain 6.9 and 5.6 water molecules, respectively. The average number of H-bonds formed by the NH2 group is 2.4 and that formed by the NH3 + group is 3. The results obtained show no H-bonding between the nitrogen atom of NH3 + group of methylammonium and water molecules. The hydrogen atom of water participating in the hydrogen bonding with the nitrogen atom of methylamine now is a constituent of the NH3 + group of methylammonium ion. The hydration free energies and the ionization constant calculated within the framework of the RISM theory are in good agreement with experimental data.  相似文献   

16.
In bis(2‐carboxypyridinium) hexafluorosilicate, 2C6H6NO2+·SiF62−, (I), and bis(2‐carboxyquinolinium) hexafluorosilicate dihydrate, 2C10H8NO2+·SiF62−·2H2O, (II), the Si atoms of the anions reside on crystallographic centres of inversion. Primary inter‐ion interactions in (I) occur via strong N—H...F and O—H...F hydrogen bonds, generating corrugated layers incorporating [SiF6]2− anions as four‐connected net nodes and organic cations as simple links in between. In (II), a set of strong N—H...F, O—H...O and O—H...F hydrogen bonds, involving water molecules, gives a three‐dimensional heterocoordinated rutile‐like framework that integrates [SiF6]2− anions as six‐connected and water molecules as three‐connected nodes. The carboxyl groups of the cation are hydrogen bonded to the water molecule [O...O = 2.5533 (13) Å], while the N—H group supports direct bonding to the anion [N...F = 2.7061 (12) Å].  相似文献   

17.
Peculiarities of the formation of the structure of aqueous LiCl solution (at a salt: water molar ratio of 1:5.3) in the temperature range 298-138 K were studied by the method of integral equations. Analysis of the results obtained suggests that transition of the system into the supercooled and glassy state is accompanied by an increase in the tetrahedral ordering of solvent molecules and a decrease in the number of interactions between the water molecules in unbound solvent. Lowering the temperature leads to an increase in the degree of structurization of water molecules surrounding the cation. Preferable formation of hydrogen bonds with the anion under extreme conditions was established. The glassy state of the solution is characterized by the absence of direct anion-cation correlations and increased (compared to standard conditions) probability of the formation of ion-water chains. Translated fromIzvestiya Akademii Nauk. Seriya Khimicheskaya, No. 10, pp. 1881–1886, October, 1999.  相似文献   

18.
The conditions necessary for the formation of ions with strong hydrogen bonding (B...H...OH2)+ are determined: 1) acid-base interaction achieves the stage of ion formation; 2) the base molecules contain atoms with unshared electron pairs; and, 3) the heat of protonization of a base molecule in the gas phase is not less than the heat of protonization of a water molecule (711 kJ/mole), but not more than the value determined by the difference between the energy of breaking the strong hydrogen bond in H5O2 + and the heat of the hydrogen bond in a dimer of water, i.e., –836 kJ/mole.Translated from Izvestiya Akademii Nauk SSSR, Seriya Khimicheskaya, No. 1, pp. 32–35, January, 1990.  相似文献   

19.
The structural characteristics of concentrated aqueous solutions of KI under the conditions of isobaric heating (P 20 MPa, T 298–623 K) were studied by the method of integral equations. As the temperature is increased, the continuous tetrahedral network of hydrogen bonds in the KI:15H2O solution is destroyed (at 323 K); in the KI: 8H2O solution, this network is not formed in the entire temperature range. The number of intermolecular H bonds in the systems appreciably decreases on heating. With increasing temperature, the influence exerted by the salt concentration on the intrinsic solvent structure becomes weaker. In both solutions, heating results in significant destruction of the first hydration shell of the K+ ion. At the same time, the nearest environment of the I ion becomes more structured on heating to 473–523 K. On further heating, however, the first hydration shell of the anion is destroyed. Heating exerts virtually no effect on the amount of contact ion pairs in the KI:15H2O solution but decreases the content of contact associates in the KI:8H2O solution.__________Translated from Zhurnal Obshchei Khimii, Vol. 75, No. 2, 2005, pp. 211–219.Original Russian Text Copyright © 2005 by Fedotova, Gribkov, Trostin.  相似文献   

20.
The novel title organic salt, 4C5H7N2+·C24H8O84−·8H2O, was obtained from the reaction of perylene‐3,4,9,10‐tetracarboxylic acid (H4ptca) with 4‐aminopyridine (4‐ap). The asymmetric unit contains half a perylene‐3,4,9,10‐tetracarboxylate (ptca4−) anion with twofold symmetry, two 4‐aminopyridinium (4‐Hap+) cations and four water molecules. Strong N—H...O hydrogen bonds connect each ptca4− anion with four 4‐Hap+ cations to form a one‐dimensional linear chain along the [010] direction, decorated by additional 4‐Hap+ cations attached by weak N—H...O hydrogen bonds to the ptca4− anions. Intermolecular O—H...O interactions of water molecules with ptca4− and 4‐Hap+ ions complete the three‐dimensional hydrogen‐bonding network. From the viewpoint of topology, each ptca4− anion acts as a 16‐connected node by hydrogen bonding to six 4‐Hap+ cations and ten water molecules to yield a highly connected hydrogen‐bonding framework. π–π interactions between 4‐Hap+ cations, and between 4‐Hap+ cations and ptca4− anions, further stabilize the three‐dimensional hydrogen‐bonding network.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号