首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 750 毫秒
1.
We analyze the asymptotic behavior as x → ∞ of the product integral Πx0xeA(s)ds, where A(s) is a perturbation of a diagonal matrix function by an integrable function on [x0,∞). Our results give information concerning the asymptotic behavior of solutions of certain linear ordinary differential equations, e.g., the second order equation y″ = a(x)y.  相似文献   

2.
For a prescribed real number s ∈ [1, 2), we give some sufficient conditions on the coefficients p(x) and q(x) such that every solution y = y(x), y ∈ C2((0, T]) of the linear differential equation (p(x)y′)′ + q(x)y = 0 on (0, T], is bounded and fractal oscillatory near x = 0 with the fractal dimension equal to s. This means that y oscillates near x = 0 and the fractal (box-counting) dimension of the graph Γ(y) of y is equal to s as well as the s dimensional upper Minkowski content (generalized length) of Γ(y) is finite and strictly positive. It verifies that y admits similar kind of the fractal geometric asymptotic behaviour near x = 0 like the chirp function ych(x) = a(x)S(φ(x)), which often occurs in the time-frequency analysis and its various applications. Furthermore, this kind of oscillations is established for the Bessel, chirp and other types of damped linear differential equations given in the form y″ + (μ/x)y′ + g(x)y = 0, x ∈ (0, T]. In order to prove the main results, we state a new criterion for fractal oscillations near x = 0 of real continuous functions which essentially improves related one presented in [1].  相似文献   

3.
We prove that approximate solutions of the Riccati equation ?′ + ?2 = a(x) yield asymptotic solutions y = ex?(s)ds of the second order linear equation y″ = a(x)y. We show that the iterative scheme ?0 = a, ?n + 12 = a ? ?n′ leads to asymptotic solutions of the cited linear equation in many interesting cases.  相似文献   

4.
For given matrices A(s) and B(s) whose entries are polynomials in s, the validity of the following implication is investigated: ?ylimt → ∞A(D) y(t) = 0 ? limt → ∞B(D) y(t) = 0. Here D denotes the differentiation operator and y stands for a sufficiently smooth vector valued function. Necessary and sufficient conditions on A(s) and B(s) for this implication to be true are given. A similar result is obtained in connection with an implication of the form ?yA(D) y(t) = 0, limt → ∞B(D) y(t) = 0, C(D) y(t) is bounded ? limt → ∞E(D) y(t) = 0.  相似文献   

5.
Let p(n) denote the smallest prime factor of an integer n>1 and let p(1)=∞. We study the asymptotic behavior of the sum M(x,y)=Σ1≤nx,p(n)>yμ(n) and use this to estimate the size of A(x)=max|f|≤12≤n<xμ(n)f(p(n))|, where μ(n) is the Moebius function. Applications of bounds for A(x), M(x,y) and similar quantities are discussed.  相似文献   

6.
The pointwise behavior of partial sums and Cesàro means of trigonometric series were studied in many papers. This paper deals with the behavior of rectangular Cesàro means at a point (x 0, y 0) for functions f(x, y) bounded in the square [; π]2 and satisfying the condition |f(x 0 + s, y 0 + t) ? f(x 0, y 0)| ≤ ρ $ \left( {\sqrt {s^2 + t^2 } } \right) $ α , for some α ∈ (0, 1) and all s and t.  相似文献   

7.
Let X=(x1, ..., xn) and Y=(y1, ..., ym) be independent samples from populations Gx and Gy, x(1) ,... x(n) be ordered statistics constructed from the sample X. A model of trials associated with the occurrence of dependent events Ak={yk (x(i)}, x(j), i < j, k=1, 2, ..., m, where x(i), x(j) are order statistics, is considered. This model is a generalization of the Bernoulli model. Distribution of frequencies of occurrences of events Ak and the limit theorems which describe asymptotic properties of these frequencies are investigated.Translated from Ukrainskii Matematicheskii Zhurnal, Vol. 42, No. 4, pp. 518–528, April, 1990.  相似文献   

8.
9.
In this paper we study centers of planar polynomial Hamiltonian systems and we are interested in the isochronous ones. We prove that every center of a polynomial Hamiltonian system of degree four (that is, with its homogeneous part of degree four not identically zero) is nonisochronous. The proof uses the geometric properties of the period annulus and it requires the study of the Hamiltonian systems associated to a Hamiltonian function of the form H(xy)=A(x)+B(xy+C(xy2+D(xy3.  相似文献   

10.
This paper discusses the existence, uniqueness, and asymptotic behavior of solutions to the equation u(t) + ∝0ta(t ? s) Au(s) ds = f(t), where A is a maximal monotone operator mapping the reflexive Banach space V into its dual V′.  相似文献   

11.
We consider the Sturm-Liouville operator L(y) = ?d 2 y/dx 2 + q(x)y in the space L 2[0, π], where the potential q(x) is a complex-valued distribution of the first order of singularity; i.e., q(x) = u′(x), uL 2[0, π]. (Here the derivative is understood in the sense of distributions.) We obtain asymptotic formulas for the eigenvalues and eigenfunctions of the operator in the case of the Neumann-Dirichlet conditions [y [1](0) = 0, y(π) = 0] and Neumann conditions [y [1](0) = 0, y [1](π) = 0] and refine similar formulas for all types of boundary conditions. The leading and second terms of asymptotics are found in closed form.  相似文献   

12.
Let X and Y be real normed spaces with an admissible scheme Γ = {En, Vn; Fn, Wn} and T: X → 2YA-proper with respect to Γ such that dist(y, A(x)) < kc(∥ x ∥) for all y in T(x) with ∥ x ∥ ? R for some R > 0 and k > 0, where c: R+R+ is a given function and A: X → 2Y a suitable possibly not A-proper mapping. Under the assumption that either T or A is odd or that (u, Kx) ? 0 for all u in T(x) with ∥ x ∥ ? r > 0 and some K: X → Y1, we obtain (in a constructive way) various generalizations of the first Fredholm theorem. The unique approximation-solvability results for the equation T(x) = f with T such that T(x) ? T(y) ?A(x ? y) for x, y in X or T is Fréchet differentiable are also established. The abstract results for A-proper mappings are then applied to the (constructive) solvability of some boundary value problems for quasilinear elliptic equations. Some of our results include the results of Lasota, Lasota-Opial, Hess, Ne?as, Petryshyn, and Babu?ka.  相似文献   

13.
Under fairly weak assumptions, the solutions of the system of Volterra equations x(t) = ∝0ta(t, s) x(s) ds + f(t), t > 0, can be written in the form x(t) = f(t) + ∝0tr(t, s) f(s) ds, t > 0, where r is the resolvent of a, i.e., the solution of the equation r(t, s) = a(t, s) + ∝0ta(t, v) r(v, s)dv, 0 < s < t. Conditions on a are given which imply that the resolvent operator f0tr(t, s) f(s) ds maps a weighted L1 space continuously into another weighted L1 space, and a weighted L space into another weighted L space. Our main theorem is used to study the asymptotic behavior of two differential delay equations.  相似文献   

14.
15.
We give sufficient conditions for the convergence of the double Fourier integral of a complex-valued function fL 1(?2) with bounded support at a given point (x 0,y 0) ∈ ?2. It turns out that this convergence essentially depends on the convergence of the single Fourier integrals of the marginal functions f(x,y 0), x ∈ ?, and f(x 0,y), y ∈ ?, at the points x:= x 0 and y:= y 0, respectively. Our theorem applies to functions in the multiplicative Zygmund classes of functions in two variables.  相似文献   

16.
Suppose x and y are two points in the upper half-plane H+, and suppose Γ is a discontinuous group of conformal automorphisms of H+ having compact fundamental domain S. Denote by NT(x, y) the number of points of the form γy (γ?Γ) in the closed disc of hyperbolic radius T centered about x, and set QT(x, y) = NT(x, y) ? V(T)A, where V(T) is the hyperbolic area of the disc, and A is the hyperbolic area of S. The asymptotic behavior of the quantity ?LxL(QT(x,y))2 is estimated in terms of small eigenvalues of the Laplacian on functions automorphic under Γ.  相似文献   

17.
Let K(s, t) be a continuous function on [0, 1] × [0, 1], and let K be the linear integral operator induced by the kernel K(s, t) on the space L2[0, 1]. This note is concerned with moment-discretization of the problem of minimizing 6Kx?y6 in the L2-norm, where y is a given continuous function. This is contrasted with the problem of least-squares solutions of the moment-discretized equation: ∝01K(si, t) x(t) dt = y(si), i = 1, 2,h., n. A simple commutativity result between the operations of “moment-discretization” and “least-squares” is established. This suggests a procedure for approximating K2y (where K2 is the generalized inverse of K), without recourse to the normal equation K1Kx = K1y, that may be used in conjunction with simple numerical quadrature formulas plus collocation, or related numerical and regularization methods for least-squares solutions of linear integral equations of the first kind.  相似文献   

18.
Let xi ≥ 0, yi ≥ 0 for i = 1,…, n; and let aj(x) be the elementary symmetric function of n variables given by aj(x) = ∑1 ≤ ii < … <ijnxiixij. Define the partical ordering x <y if aj(x) ≤ aj(y), j = 1,… n. We show that x $?y ? xα$?yα, 0 $?α ≤ 1, where {xα}i = xαi. We also give a necessary and sufficient condition on a function f(t) such that x <y ? f(x) <f(y). Both results depend crucially on the following: If x <y there exists a piecewise differentiable path z(t), with zi(t) ≥ 0, such that z(0) = x, z(1) = y, and z(s) <z(t) if 0 ≤ st ≤ 1.  相似文献   

19.
The asymptotic behavior as t → ∞ of solutions of ∝0tu(t ? s) dA(s) = f(t) is studied when f(t) satisfies a “o” estimate as t ” ∞, and A belongs to a weighted space and its Laplace-Stieltjes transform has finitely many zeros in its closed half-plane of convergence. Results for systems of integral equations as well as for integrodifferential systems are also given.  相似文献   

20.
We examine the asymptotic stability of the zero solution of the first-order linear equation x′(t) = Ax(t) + ∝0tB(t ? s) x(s) ds, where B(t) is integrable and does not change sign on [0, ∞). The results are applied to an examination of the stability of equilibrium of some nonlinear population models.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号