首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
New sodium strontium rare-earth orthophosphates with general formula NaxSr3?2xLnx (PO4)2 (Ln = La, Nd, Gd) have been prepared and characterized. They seem to be of Sr3 (PO4)2 structural type. In NaSrLa1?x?yCexTby (PO4)2, a new green phosphor absorbing in the UV region, high yield results from a Ce3+ → Tb3+ energy transfer.  相似文献   

2.
NaLaP2O7 and NaGdP2O7 powder samples are prepared by solid-state reactions at 750 and 600 °C, respectively, and the VUV-excited luminescence properties of Ln3+ (Ln=Ce, Pr, Tb, Tm, Eu) in both diphosphates are studied. Ln3+ ions in both hosts show analogous luminescence. For Ce3+-doped samples, the five Ce3+ 5d levels can be clearly identified. As for Pr3+ and Tb3+-doped samples, strong 4f-5d absorption band around 172 nm is observed, which matches well with Xe-He excimer in plasma display panel (PDP) devices. As a result, Pr3+ can be utilized as sensitizer to absorb 172 nm VUV photon and transfer energy to appropriate activators, and Tb3+-doped NaREP2O7(RE=La, Gd) are potential 172 nm excited green PDP phosphors. For Tm3+ and Eu3+-doped samples, the Tm3+-O2− charge transfer band (CTB) is observed to be at 177 nm, but the CTB of Eu3+ is observed at abnormally low energy position, which might originate from multi-position of Eu3+ ions. The similarity in luminescence properties of Ln3+ in both hosts indicates certain structural resemblance of coordination environment of Ln3+ in the two sodium rare earth diphosphates.  相似文献   

3.
The oxygen deficiency of perovskite-type Pr0.5Sr0.5FeO3−δ, studied by coulometric titration, thermogravimetry and Mössbauer spectroscopy, is significantly higher than that in La0.5Sr0.5FeO3−δ at 973-1223 K. The variations of hole mobility and Seebeck coefficient in oxidizing atmospheres, where the total conductivity of praseodymium-strontium ferrite is predominantly p-type electronic, suggest progressive delocalization of the p-type charge carriers on increasing oxygen chemical potential. As for other perovskite-type ferrites, reduction leads to the co-existence of vacancy-ordered and disordered domains. The n-type electronic conductivity of Pr0.5Sr0.5FeO3−δ at reduced p(O2) and the hole transport under oxidizing conditions are both lower compared to the La-containing analogue. Analogous conclusion was drawn for the ionic conductivity, calculated from the steady-state oxygen permeation data under oxidizing conditions and from the p(O2)-dependencies of total conductivity in the vicinity of electron-hole equilibrium points where the average iron oxidation state is 3+. The similar activation energies for partial ionic and electronic conductivities in Ln0.5Sr0.5FeO3−δ (Ln=La, Pr) indicate that the presence of praseodymium does not alter any of the conduction mechanisms but decreases the charge-carrier mobility due to the smaller radius of Pr3+ cations stabilized in the perovskite lattice.  相似文献   

4.
Binary (ZnO)0.5(P2O5)0.5 glasses doped with Eu2O3 and nanoparticles of Gd2O3:Eu were prepared by conventional melt-quench method and their luminescence properties were compared. Undoped (ZnO)0.5(P2O5)0.5 glass is characterized by a luminescent defect centre (similar to L-centre present in Na2O-SiO2 glasses) with emission around 324 nm and having an excited state lifetime of 18 ns. Such defect centres can transfer the energy to Eu3+ ions leading to improved Eu3+ luminescence from such glasses. Based on the decay curves corresponding to the 5D0 level of Eu3+ ions in both Gd2O3:Eu nanoparticles incorporated as well as Eu2O3 incorporated glasses, a significant clustering of Eu3+ ions taking place with the latter sample is confirmed. From the lifetime studies of the excited state of L-centre emission from (ZnO)0.5(P2O5)0.5 glass doped with Gd2O3:Eu nanoparticles, it is established that there exists weak energy transfer from L-centres to Eu3+ ions. Poor energy transfer from the defect centres to Eu3+ ions in Gd2O3:Eu nanoparticles doped (ZnO)0.5(P2O5)0.5 glass has been attributed to effective shielding of Eu3+ ions from the luminescence centre by Gd-O-P type of linkages, leading to an increased distance between luminescent centre and Eu3+ ions.  相似文献   

5.
We have used three soft-chemistry methods for the efficient preparation of Ln1−xSrxCoO3 samples, adapting the combustion and the liquid-mix methods for the synthesis of the Ln = La and Gd compounds, respectively, and the preparation of Nd1−xSrxCoO3 by the nitrate decomposition method. We report the magnetic and electrical properties of these relatively small particle-size materials, specially in the case of the Ln = La and Ln = Nd series (d≈0.2 μm and 0.5 μm, respectively), and we compare them to those displayed by the corresponding compounds prepared at higher temperatures. The compounds here obtained are ferromagnetic for x≥0.15 when Ln = La and for x≥0.20 when Ln = Nd and Gd. Their resistivity decreases as the doping degree increases. And, very interestingly, for compositions 0.20<x≤0.45, when Ln = La, and for x=0.40, when Ln = Nd, they show M-I transitions as the temperature rises. These are very sensitive to the application of electrical current and its polarity and the presence of magnetic fields, displaying peculiar behaviors. Paper presented at the 5th Euroconference on Solid State Ionics, Benalmádena, Spain, Sept. 13–20, 1998.  相似文献   

6.
刘立英  王如志  朱满康  侯育冬 《中国物理 B》2013,22(3):36401-036401
The effects of La doping on the ferroelectric properties of 0.92Na0.5Bi0.5TiO3-0.08BaTiO3(NBT-BT) solid solution have been studied both experimentally and theoretically.The experimental results show that an abnormal ferro-toantiferroelectric phase transition is induced by La doping in NBT-BT.The first-principles calculations indicate that La3+ cations selectively substitute for the A site in NBT-BT as donors.Furthermore,the computed binding energy reveals that La cations is most likely to substitute Ba 2+or Na+,not Bi3+,at A site as donors in NBT-BT,as supported by our Raman spectra.The ferro-to-antiferroelectric phase transition of La-doped NBT-BT is believed to originate from the lattice aberrance and redistribution of valence electrons,thus strengthening the bonding of A-O,enhancing the hybridization between the A cation d orbital and O 2p orbital,and resulting in the deflection of the polar direction of NBT-BT lattice.  相似文献   

7.
Trivalent lanthanide ions (Ln3+) doped in hexagonal (β)-NaYF4 nanocrystals (Na24Y23Ln1F96, Ln = La, Ce, Pr, Nd, Pm, Sm, Eu, Gd) were systematically studied by density functional theory (DFT) with a perturbative account for spin–orbit coupling. The simulated results, including the optimised molecular structures, electronic and magnetic properties, are compared to previous spin-polarised DFT studies in the same system. The spin–orbit coupling effects become significant with the increase in the number of unpaired 4f electrons in the doped lanthanide ions, particularly for the Sm3+-, Eu3+- and Gd3+-doped nanocrystals. Abnormal behaviour of Eu3+-doped nanocrystals was observed due to the Wybourne–Downer mechanism. A ‘sandwich-like’ 2p–4f–4d,5d electronic structure for Na24Y23Ln1F96 and the energies of the highest occupied 4f electrons from Ce3+ to Gd3+ are consistent with Dorenbos's relationship. The energy difference between the first and second Russell–Saunders terms (2S+1L) of the lanthanide dopant is consistent with Carnall's experimental results and with earlier spin-polarised DFT calculations.  相似文献   

8.
Melilite type ceramics ABC3O7 such as La1.54Sr0.46Ga3O7.27 are a new class of oxide conductors where the conductivity is carried out through interstitial oxygen ions. This work presents the attempt to replace the A-site element La with the other lanthanide elements and Y, resulting in various Ln1 + xSr1 − xGa3O7 + x/2 ceramics, in which Ln = La, Pr, Nd, Sm, Eu, Gd, Dy, Yb, Y, and 0.1 < x < 0.54. X-ray diffraction analysis shows that the melilite structure could be formed when the replacement is conducted with most lanthanides but not Yb and Y. Impedance spectroscopy demonstrates that the conductivity decreases dramatically with the decreasing of Ln3+ size and the charge-carrier concentration. These results suggest that, as an interstitial oxide ion electrolyte, La1.54Sr0.46Ga3O7.27 is the most promising ceramic in the Ln1 + xSr1 − xGa3O7+x/2 melilite family since La3+ has the largest ionic radius of the lanthanide elements.  相似文献   

9.
The XAS study at Cr, Co, Ni and Mn K-edges was performed for the doped CMR manganites Ln0.5Ca0.5Mn1-xBxO3 with Ln=La, Nd, Sm and B= Cr, Co, Ni (), on the samples that were studied previously for their ferromagnetic-metallic to antiferromagnetic-insulator transition. We observed that the formal charges of the doping elements are Ni2+, Co2+ and Cr3+. It is also evidenced that the average formal charge of the manganese is increased after doping, in agreement with the charge compensation keeping “O3” stoichiometry. These results suggest that the doping elements participate directly to the band structure. Received: 9 January 1998 / Received in final form: 6 April 1998 / Accepted: 7 April 1998  相似文献   

10.
The spectroscopic characterization of yttria, singly and doubly doped with Ln3+ (Ln=Sm, Eu, Dy, Er, Ho) and Bi3+ ions, is performed through excitation spectra, emission spectra and decay time measurements. The obtained spectroscopic data clearly indicate that energy transfer takes place from Bi3+ to Ln3+ ions. The energy transfer efficiency of Bi3+→Ln3+ and quantum efficiency of Ln3+ were calculated. Upon excitation of 370 nm (Bi3+ excitation band), the quantum efficiency of Ln3+ varies from ~4% to ~44%. The energy transfer efficiency increases continuously with increasing Ln3+ concentrations, whereas the variation of the quantum efficiency of Ln3+ is complicated. The quantum efficiency of Ln3+ is discussed in terms of electron transfer and cross relaxation.  相似文献   

11.
Magnetic and electrical properties of well-characterized Gd0.5Ba0.5CoO2.9 have been studied carefully in order to compare them with those of other analogous cobaltates of the type Ln0.5A0.5CoO3 (Ln=La, Nd and A=Sr, Ba) which are ferromagnetic. The results show that Gd0.5Ba0.5CoO2.9, which has A-site cation ordering at room temperature, does not become a genuine ferromagnet at low temperatures, but the ferromagnetic interactions observed at 280 K give over to an antiferromagnetic (AFM) state on cooling to 230 K. The AFM state is rendered ferromagnetic on the application of high magnetic fields. The properties can be understood on the basis of phase separation induced by the large A-site cation-disorder, arising from the size mismatch.  相似文献   

12.
Undoped and Eu3+ activated Ln3BWO9 (Ln=Y, La, Gd) were prepared by the Pechini method and characterized with X-ray diffraction (XRD) and ultraviolet (UV) spectroscopy. All the samples have the hexagonal phase after heat treatment in the range of 850–1000 °C. The Eu3+ doped samples emit high-purity red light with peak maximum at about 617 nm under excitation of UV light (~285 nm) at room temperature. When the doping concentration of Eu3+ is about 20–30%, luminescence intensity reaches the maximum. Luminescence decay curves indicate that Ln3BWO9:Eu3+ exhibits a fast decay time of about 0.5 ms. A possible luminescence mechanism has also been proposed. It is worth noting that both the absorption of host lattice and the charge transfer (CT) transition of Eu3+ are of great importance to the promising luminescent performance of Ln3BWO9:Eu3+.  相似文献   

13.
Magnetic and electrical properties of Ln0.5Ba0.5CoO3−δ with Ln=Dy and Er have been investigated to examine the effects of large cation size-disorder. While the Dy compound shows the small magnetic anomaly around 290 K just as the Gd derivative, the Er compound is essentially paramagnetic due to the large cation size-disorder. Compositions with the same average A-site cation radii as Dy0.5Ba0.5CoO2.91 and Er0.5Ba0.5CoO2.9, but with smaller size-disorder, show progressive evolution of ferromagnetism and metallic properties with decreasing disorder.  相似文献   

14.
The stable and crystalline pure phase Ln(OH)3 (Ln=La, Nd, Sm, Eu, Gd, Tb, and Dy) nanorods are synthesized by a facile hydrothermal method using the simple chemical materials (rare-earth chloride hexahydrate LnCl3?6H2O and NH3?H2O) and polymer polyvinypyrrolidone (PVP). The as-prepared Ln(OH)3 nanorods can be successfully converted to Ln2O3 nanorods via calcination under appropriate conditions. X-ray diffraction (XRD) spectra, Fourier transformed infrared (FTIR) spectrum, scanning electron microscopy (SEM), transmission electron microscopy (TEM), high-Resolution TEM (HRTEM), and Raman spectroscopy were used to examine the morphologies and microstructures to find out the cause. The analyzed results indicate that the obtained nanorods are rare-earth hydroxides and oxides with 1D nanostructures. The formation mechanism of the Ln(OH)3 and Ln2O3 nanorods was investigated. Optical properties of the Ln(OH)3 and Ln2O3 nanorods were determined by photoluminescence (PL). Ln(OH)3 and Ln2O3 nanorods exhibit a strong blue emission with the strongest narrow bands at about 469 nm corresponding to the intra-4f transitions 5D27F6, which have potential applications in fluorescent devices.  相似文献   

15.
The spectroscopic properties of R1/2Na1/2TiO3:Pr3+ (R=La, Gd, Y, Lu) are investigated in the temperature range 77-500 K and interpreted in the frame of the intervalence charge transfer (IVCT) model. The model allowed locating the ground state of Pr3+ relative to the host fundamental bands with an accuracy of 0.1-0.2 eV.  相似文献   

16.
We have studied the photoluminescence (PL) of (Y, Ln)VO4:Eu3+ (Ln=La and Gd) phosphors and the correlation of the PL of those phosphor with their crystal structure. It is found that (Y, Gd)VO4:Eu3+ phosphors have the same crystal structure as YVO4:Eu3+, which is tetragonal with a little different lattice parameters. In the case of (Y, La)VO4:Eu3+ phosphors, however, the gradual change from tetragonal to monoclinic structure of host lattice was observed as the amount of La ion increased. To investigate the PL property of (Y, Ln)VO4:Eu3+ (Ln=La and Gd) phosphors, vacuum ultraviolet (VUV) and ultraviolet (UV) excitation were used. The favorable crystal structure for the PL intensity of orthovanadate phosphor under 147 and 254 nm excitation was tetragonal containing Gd ion and under 365 nm excitation was monoclinic containing La ion which might have the lowest site symmetry for Eu3+ ion.  相似文献   

17.
Energy shifts of 4f6 states of Eu3+ in matrices, and phonon sidebands, linewidths and luminescence decay of Eu3+ in Ln2O2S (Ln=Lu, Y, Gd and La) have been studied. The charge transfer state (CTS) of Eu3+ is described by a model in which a hole is transferred from Eu3+ to ligands. Septet states obtained from the 4f7(8S) + hole configuration of CTS interact with the 7F term of the 4f6 configuration. This effect causes downward shifts of 7FJ states in matrices. Diffuse charge distributions for 7FJ states due to the mixing with CTS make the curvatuve of their adiabatic potential curves be smaller than that for 5DJ'. Such a difference in the potential curves between 7FJ and 5DJ' causes broadening of the absorption lines compared with the corresponding emission linewidths in Y2O2S. A dynamic Jahn-Teller model is proposed for the concentration-enhanced phonon sidebands accompanying 4f-4f transitions. The vibronics appear only in the excitation spectra and not in the emission spectra. Spectral distributions of the effective density of phonon states are obtained from the observed phonon sidebands for Ln2O2S: 5%Eu. The phonon spectra indicate delocalization of the 4f orbitals of Eu3+ with increasing the host-cation radius. The observed lifetimes of 5D0 show a decrease in the same order due to decrease in the 4f-CTS mixing.  相似文献   

18.
The interplay between the superconducting phase and spin density wave order phase was studied. We report the magnetic and superconducting properties of the hole-doped FeAs-based superconducting compound La0.87−xLnxSr0.13FeAsO (Ln=Sm, Gd, Dy; 0≤x≤0.06). Both resistivity and magnetic susceptibility measurements show that the superconducting transition temperature decreases with increase in composition of magnetic ions. The hysteresis loop of the La0.87−xLnxSr0.13FeAsO sample shows a superconducting hysteresis in addition to a paramagnetic background. The experiment demonstrates that the magnetism and superconductivity coexist in hole-doped FeAs-based superconducting compounds. Among these three magnetic rare-earth elements, the influence of Dy3+ doping on superconductivity is more evident than that of Gd3+ doping, while the influence of Sm3+ doping is the weakest. The trend is consistent with the variation of the lattice parameter along c-axis.  相似文献   

19.
Novel red emitting organic luminescent complexes, namely Eu0.5Ln0.5(TTA)3 Phen (Eu: europium, Ln: Y/Tb, Y: yttrium, Tb: terbium, TTA: thenoyl tri fluoro acetone, Phen: phenanthroline) were synthesized by solution technique, maintaining stoichiometric ratio. These complexes were characterized by various techniques such as XRD, optical absorption and photoluminescence (PL) spectra. Electroluminescence cells were designed by sandwiching Eu0.5Ln0.5(TTA)3Phen between indium tin oxide (ITO) and aluminum (Al). Voltage?current characteristics and voltage?brightness characteristics of the developed electroluminescent cell were carried out. Turn on voltage of both the devices was found to be 9 V. These devices emit intense red emission at 611 nm, proving their potential applications as organic light emitting diodes and displays.  相似文献   

20.
Monoclinic LnPO4:Tb,Bi (Ln=La,Gd) phosphors were prepared by hydrothermal reaction and their luminescent properties under ultraviolet (UV) and vacuum ultraviolet (VUV) excitation were investigated. LaPO4:Tb,Bi phosphor and GdPO4:Tb phosphor showed the strongest emission intensity under 254 and 147 nm excitation, respectively, because of the different energy transfer models. In UV region, Bi3+ absorbed most energy then transferred to Tb3+, but in VUV region it was the host which absorbed most energy and transferred to Tb3+.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号