首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Jianlong Wang 《Talanta》2009,79(1):72-76
Features of Au NPs-aptamer conjugates as a powerful competitive reagent to substitute antibody in enhancing surface plasmon resonance spectroscopy (SPR) signal for the detection of small molecule are explored for the first time. In order to evaluate the sensing ability of Au NPs-aptamer conjugates as a competitive reagent, a novel SPR sensor based on indirect competitive inhibition assay (ICIA) for the detection of adenosine is constructed by employing the competitive reaction between antiadenosine aptamer with adenosine and antiadenosine aptamer with its partial complementary ss-DNA. The partial complementary ss-DNA of antiadenosine aptamer is firstly immobilized on SPR gold film as sensing surface. When the Au NPs-antiadenosine aptamer conjugates solution is added to SPR cell in the absence of adenosine, Au NPs-antiadenosine aptamer conjugates is adsorbed to SPR sensor by the DNA hybridization reaction, and results in a large change of SPR signal. However, the change of SPR signal is decreased when the mixing solution of adenosine with Au NPs-antiadenosine aptamer conjugates is added. This is because adenosine reacts with antiadenosine aptamer in Au NPs-antiadenosine aptamer conjugates and changes its structure from ss-DNA to tertiary structure, which cannot hybridize with its partial complementary ss-DNA immobilized on SPR gold surface. Based on this principle, a SPR sensor for indirect detection of adenosine can be developed. The experimental results confirm that the SPR sensor possesses a good sensitivity and a high selectivity for adenosine, which indirectly confirms that Au NPs-aptamer conjugates is a powerful competitive reagent. More significantly, it can be used to develop other SPR sensors based on ICIA to detect different targets by changing the corresponding type of aptamer in Au NPs-aptamer conjugates.  相似文献   

2.
In this work, a label-free electrochemical sensor based on target-induced displacement is reported with adenosine as the model analyte. The sensing substrate is prepared using a gold electrode modified with a self-assembled monolayer of 1,6-hexanedithiol that mediates the assembly of a gold nanoparticle film, which can increase the surface loading of capture probe and enhance the signal. An aptamer for adenosine is applied to hybridizing with the capture probe, yielding a double-stranded complex of the aptamer and the capture probe on the surface. The interaction of adenosine with the aptamer displaces the aptamer sequence and causes it to dissociate from the interface. This results in a decrease in the amount of aptamer/capture probe duplex form, and, accordingly, the desorption of methylene blue, an electroactive indicator bound to the duplex, from the electrode. Then, the redox current of the indicator can reflect the concentration of the analyte. The fabricated sensor is shown to exhibit high sensitivity, desirable selectivity and a three-decade wide linear range.  相似文献   

3.
In the present work, a signal‐on electrochemical sensing strategy for the simultaneous detection of adenosine and thrombin is developed based on switching structures of aptamers. An Au electrode as the sensing surface is modified with two kinds of thiolated capture probes complementary to the linker DNA that contains either an adenosine aptamer or thrombin aptamer. The capture probes hybridize with their corresponding linker DNA, which has prehybridized with the reporter DNA loaded onto the gold nanoparticles (AuNPs). The AuNP contained two kinds of bio‐barcode DNA: one is complementary to the linker DNA (reporter), whereas the other is not (signal) and is tagged with different metal sulfide nanoparticles. Thus a “sandwich‐type” sensing interface is fabricated for adenosine and thrombin. With the introduction of adenosine and thrombin, the aptamer parts bind with their targets and fold to form the complex structures. As a result, the bio‐barcoded AuNPs are released into solution. The metal sulfide nanoparticles are measured by anodic stripping voltammetry (ASV), and the concentrations of adenosine and thrombin are proportional to the signal of either metal ion. With the dual amplification of the bio‐barcoded AuNP and the preconcentration of metal ions through ASV technology, detection limits as low as 6.6×10?12 M for adenosine and 1.0×10?12 M for thrombin are achieved. The sensor exhibits excellent selectivity and detectability in biological samples.  相似文献   

4.
A solid-state electrochemiluminescence sensing platform based on ferrocene-labeled structure-switching signaling aptamer (Fc-aptamer) for highly sensitive detection of small molecules is developed successfully using adenosine as a model analyte. Such special sensing platform included two main parts, an electrochemiluminescence (ECL) substrate and an ECL intensity switch. The ECL substrate was made by modifying the complex of Au nanoparticle and Ruthenium (II) tris-(bipyridine) (Ru(bpy)32+-AuNPs) onto Au electrode. An anti-adenosine aptamer labeled by ferrocene acted as the ECL intensity switch. A short complementary ssDNA for the aptamer was applied to hybridizing with the aptamer, yielding a double-stranded complex of the aptamer and the ssDNA on the electrode surface. The introduction of adenosine triggered structure switching of the aptamer. As a result, the ssDNA was forced to dissociate from the sensing platform. Such structural change of the aptamer resulted in an obvious ECL intensity decrease due to the increased quenching effect of Fc to the ECL substrate. The analytic results were sensitive and specific.  相似文献   

5.
A new adenosine biosensor based on aptamer probe is introduced in this article. An amino-labeled aptamer probe was immobilized on the gold electrode modified with an o-phenylenediamine electropolymerized film. When adenosine is bound specifically to the aptamer probe, the interface of the biosensor is changed, resulting in the decrement of the peak current. The response current is proportional to the amount of adenosine in sample. The used electrode can be easily regenerated in hot water. The proposed biosensor represents a linear response to adenosine over a concentration range of 1.0x 10^-7-l.0x10^-4 mol/L with a detection limit of 1.0xl0^-8 mol/L. The presented biosensor exhibits a nice specificity towards adenosine. It offers a promising approach for adenosine assay due to its excellent electrochemical properties that are believed to be very attractive for electrochemical studies and electroanalytical applications.  相似文献   

6.
Yang  Hongmei  Hu  Peiyu  Tang  Jing  Cheng  Ying  Wang  Fang  Chen  Zilin 《Journal of Solid State Electrochemistry》2021,25(4):1383-1391

A simple and sensitive bifunctional electrochemical aptasensor for detection of adenosine and thrombin has been developed using gold nanoparticles–electrochemically reduced graphene oxide (AuNPs-ERGO) composite film-modified electrode. Firstly, the reduced graphene oxide film and AuNPs were sequentially immobilized on glassy carbon electrode (GCE) surface. Secondly, thrombin aptamer was immobilized on the modified electrode. Finally, adenosine aptamer was hybridized with it to serve as a recognition element and methylene blue (MB) as electrochemical signal indicator. In the presence of adenosine or thrombin, the sensor recognized it and a conformational change was induced in aptamer, resulting in decrease of the peak current of MB. The linear relation between concentration of adenosine or thrombin and peak current of MB allowed quantification of them. Thanks to the special electronic characteristic of AuNPs-ERGO composite film, sensitivity of sensor was greatly improved. Under optimal conditions, the proposed aptasensor presented an excellent performance in a linear range of 25 nM to 750 nM for adenosine and 0.5 nM to 10 nM for thrombin. Detection limits were estimated to be 8.3 nM for adenosine and 0.17 nM for thrombin, respectively. Moreover, dual-analyte detection of adenosine and thrombin was achieved without potentially increasing the complexity and cost of the assay.

  相似文献   

7.
Label-free and reagentless aptamer-based sensors for small molecules   总被引:1,自引:0,他引:1  
A label free, reagentless aptasensor for adenosine is developed on an ISFET device. The separation of an aptamer/nucleic acid duplex by adenosine leads to the aptamer/adenosine complex that alters the gate potential of the ISFET. The sensitivity limit of the device is 5 x 10-5 M. Also, the immobilization of the aptamer/nucleic acid duplex on an Au-electrode and the separation of the duplex by adenosine mono-phosphate (AMP) enable the electrochemical detection of adenosine by faradaic impedance spectroscopy. The separation of the aptamer/nucleic acid duplex by adenosine and the formation of the aptamer/adenosine complex results in a decrease in the interfacial electron-transfer resistance in the presence of [Fe(CN)6]3-/4- as redox active substrate.  相似文献   

8.
This work deals with the characterization of a phosphorothioate anchoring strategy for aptamer molecules linked to gold, in the context of electrochemical sensors, using adenosine aptamer as model system. Surface density of immobilized phosphorothioate oligonucleotide sequences has been explored for a range of oligonucleotide concentrations (0.055–55 μM), finding a consequent variation of molecular surface density (3.5×1011–2.8×1013 molecules/cm2). Most suitable aptamer concentration for adenosine recognition was also explored and found to be around 5.5 μM. As proof of concept of phosphorothioate strategy, electrochemical response to adenosine concentration was measured using a ferrocene‐labeled oligonucleotide sequence, and phosphorothioate anchoring thermal stability was compared to thiol immobilization.  相似文献   

9.
Xiluan Yan  Masaaki Kai 《Talanta》2009,79(2):383-4519
We have developed a novel sensitive chemiluminescence (CL) aptasensor for the target assay as exemplified by using adenosine as a model target. In this work, we have demonstrated the signaling mechanism to make detection based on magnetic separation and 3,4,5-trimethoxyl-phenylglyoxal (TMPG), a special CL reagent as the signaling molecule, which reacts instantaneously with guanine nucleobases (G) of adenosine-binding aptamer strands. Briefly, amino-functioned capture DNA sequences are immobilized on the surface of carboxyl-modified magnetic beads, and then hybridized with label-free G-rich (including 15 guanine nucleobases) adenosine-binding aptamer strands to form our CL aptasensor. Upon the introduction of adenosine, the aptamer on the surface of magnetic beads is triggered to make structure switching to the formation of the adenosine/aptamer complex. Consequently, G-rich aptamer strands are forced to dissociate from magnetic beads sensing interface, resulting in a decrease of CL signal. The decrement of peak signal is proportional to the amount of adenosine. The effects of the amounts of capture DNA, aptamer, magnetic beads are investigated and optimized. It was found that the CL intensity had a linear dependency on the concentration of adenosine in the range of 4 × 10−7 to 1 × 10−5 M. With a low detection limit of 8 × 10−8 M and simplicity in CL detection, this novel technique will offer a great promise for future target/aptamer analysis.  相似文献   

10.
We have investigated the effect of the folding of DNA aptamers on the colloidal stability of gold nanoparticles (AuNPs) to which an aptamer is tethered. On the basis of the studies of two different aptamers (adenosine aptamer and K+ aptamer), we discovered a unique colloidal stabilization effect associated with aptamer folding: AuNPs to which folded aptamer structures are attached are more stable toward salt-induced aggregation than those tethered to unfolded aptamers. This colloidal stabilization effect is more significant when a DNA spacer was incorporated between AuNP and the aptamer or when lower aptamer surface graft densities were used. The conformation that aptamers adopt on the surface appears to be a key factor that determines the relative stability of different AuNPs. Dynamic light scattering experiments revealed that the sizes of AuNPs modified with folded aptamers were larger than those of AuNPs modified with unfolded (but largely collapsed) aptamers in salt solution. From both the electrostatic and steric stabilization points of view, the folded aptamers that are more extended from the surface have a higher stabilization effect on AuNP than the unfolded aptamers. On the basis of this unique phenomenon, colorimetric biosensors have been developed for the detection of adenosine, K+, adenosine deaminase, and its inhibitors. Moreover, distinct AuNP aggregation and redispersion stages can be readily operated by controlling aptamer folding and unfolding states with the addition of adenosine and adenosine deaminase.  相似文献   

11.
We report on an electrochemical aptasensor for the ultrasensitive determination of thrombin. A glassy carbon electrode modified with a graphene-porphyrin nanocomposite exhibits excellent electrochemical activity and can be used as a redox probe in differential pulse voltammetry of the porphyrin on its surface. The thrombin aptamer is then immobilized via p-stacking interactions between aptamer and graphene and π-π stacking with porphyrin simultaneously. The resulting electrochemical aptasensor displays a linear response to thrombin in the 5–1,500 nM concentration range and with a limit of detection of 0.2 nM (at an S/N of 3). The sensor benefits from the synergetic effects of graphene (with its high conductivity and high surface area), of the porphyrin (possessing excellent electrochemical activity), and of the aptamer (with its high affinity and specificity). This kind of aptasensor conceivably represents a promising tool for bioanalytical applications.
Figure
The representation of the sensing procedure for analysis of thrombin based on the TA/GN-Por/GCE by an electrochemical strategy  相似文献   

12.
Herein, we combine the advantage of aptamer technique with the amplifying effect of an enzyme-free signal-amplification and Au nanoparticles (NPs) to design a sensitive surface plasmon resonance (SPR) aptasensor for detecting small molecules. This detection system consists of aptamer, detection probe (c-DNA1) partially hybridizing to the aptamer strand, Au NPs-linked hairpin DNA (Au-H-DNA1), and thiolated hairpin DNA (H-DNA2) previously immobilized on SPR gold chip. In the absence of target, the H-DNA1 possessing hairpin structure cannot hybridize with H-DNA2 and thereby Au NPs will not be captured on the SPR gold chip surface. Upon addition of target, the detection probe c-DNA1 is forced to dissociate from the c-DNA1/aptamer duplex by the specific recognition of the target to its aptamer. The released c-DNA1 hybridizes with Au-H-DNA1 and opens the hairpin structure, which accelerate the hybridization between Au-H-DNA1 and H-DNA2, leading to the displacement of the c-DNA1 through a branch migration process. The released c-DNA1 then hybridizes with another Au-H-DNA1 probe, and the cycle starts anew, resulting in the continuous immobilization of Au-H-DNA1 probes on the SPR chip, generating a significant change of SPR signal due to the electronic coupling interaction between the localized surface plasma of the Au NPs and the surface plasma wave. With the use of adenosine as a proof-of-principle analyte, this sensing platform can detect adenosine specifically with a detection limit as low as 0.21 pM, providing a simple, sensitive and selective protocol for small target molecules detection.  相似文献   

13.
利用AuNPs/Nafion复合膜技术固定Ru(bpy)2+3,采用羧基化碳纳米管固定氨基化腺苷适配体,制备腺甘电化学发光生物传感器.采用循环伏安法和电化学发光法对传感器进行表征.结果表明,此传感器具有良好的稳定性和重现性.腺苷与传感器作用后,腺苷与其适配体形成G四面体结构,Ru(bpy)2+3的电化学发光强度降低.在最佳实验条件下,电化学发光强度降低量与腺苷浓度的负对数在1.0×10-11~1.0×10-7 mol/L范围内呈良好的线性关系,线性方程为ΔIECL=-890lgC-5050,检出限(S/N=3)为5.0 × 10-12 mol/L.对1.0 × 10-10 mol/L腺苷平行测定11次,相对标准偏差为2.7%.用于尿液中腺苷的测定,加标回收率在 97.1%~110.0%之间.  相似文献   

14.
We report a general strategy for developing a smart MRI contrast agent for the sensing of small molecules such as adenosine based on a DNA aptamer that is conjugated to a Gd compound and a protein streptavidin. The binding of adenosine to its aptamer results in the dissociation of the Gd compound from the large protein, leading to decreases in the rotational correlation time and thus change of MRI contrast.  相似文献   

15.
吕菊波  张亚会  刘刚  徐慧 《化学通报》2018,81(1):59-64,76
本文提出了一种基于磁性辅助的杂交链反应放大检测三磷酸腺苷(ATP)的传感策略。磁性纳米粒子表面易于修饰,而且操作方便,具有很好的分离效果,能够提高生物传感的选择性。首先,利用生物素与链霉亲和素之间的亲和力作用,将生物素标记的ATP核酸适配体连接到链霉亲和素修饰的磁性纳米粒子表面,加入与ATP核酸适配体互补的一段DNA进行杂交,通过磁性分离除去未杂交上的DNA,加入靶向ATP,ATP与其适配体特异性结合将适配体的互补链通过磁性分离出来,磁性分离出的信号DNA继续用于下一步的杂交链反应,将信号放大,最后利用氧化石墨烯(GO)对荧光的猝灭效应降低背景荧光,达到高灵敏度、高选择性检测靶向ATP。其中,ATP的最低检测浓度为0.1nmol/L。  相似文献   

16.
We present an electrochemical aptasensor for rapid and ultrasensitive determination of the additive bisphenol A (BPA) and for screening drinking water for the presence of BPA. A specific aptamer against BPA and its complementary DNA probe were immobilized on the surface of a gold electrode via self-assembly and hybridization, respectively. The detection of BPA is mainly based on the competitive recognition of BPA by the immobilized aptamer on the surface of the electrode. The electrochemical aptasensor enables BPA to be detected in drinking water with a limit of detection as low as 0.284 pg?mL?1 in less than 30 min. This extraordinary sensitivity makes the method a most powerful tool for on-site monitoring of water quality and food safety.
Figure
A novel electrochemical aptasensor was developed for rapid and ultrasensitive detection of bisphenol A (BPA) and screening of BPA in drinking water using the specific aptamer against BPA.  相似文献   

17.
In this work, we report a comparative study on three highly specific amplification strategies for the ultrasensitive detection of thrombin with the use of aptamer sandwich protocol. The protocol consisted on the use of a first thrombin aptamer immobilized on the electrode surface, the recognition of thrombin protein, and the reaction with a second biotinylated thrombin aptamer forming the sandwich. Through the exposed biotin end, three variants have been tested to amplify the electrochemical impedance signal. The strategies included (a) silver enhancement treatment, (b) gold enhancement treatment and (c) insoluble product produced by the combination of the enzyme horseradish peroxidase (HRP) and 3-amino-9-ethylcarbazole (AEC). The properties of the sensing surface were probed by electrochemical impedance measurements in the presence of the ferrocyanide/ferricyanide redox marker. Insoluble product strategy and silver enhancement treatment resulted in the lowest detection limit (0.3 pM), while gold enhancement method resulted in the highest reproducibility, 8.8% RSD at the pM thrombin concentration levels. Results of silver and gold enhancement treatment also permitted direct inspection by scanning electron microscopy (SEM).  相似文献   

18.
Surface plasmon resonance imaging (SPRi) by enabling label‐free, real time assessment of biomolecular interactions in multiplexed manner is one of the methods of choice for high throughput characterization of large pools of DNA aptamer candidates following in vitro selection. Moreover, with major advances in in situ amplification methods SPRi became also a viable detection platform for aptamer microarrays. In case of aptamer microarrays, commonly prepared by microspotting, the direct assessment of the surface density of aptamer probes, which is essential for both kinetic and sensing measurements is not possible. Therefore, here we introduce a methodology for simple, one‐step determination of surface densities of thiol labelled aptamer monolayers microspotted on gold SPRi chips. Based on this methodology we investigated in detail the effect of the surface density of aptamers on target binding through two aptamer‐target systems, i. e. human immunoglobulin E (hIgE) and six histidine tag 6xHis‐tag. We found that the surface density of the aptamers is indeed critical and shows a sharp maximum in terms of target binding efficiency, which is largely determined by the size of the target. The optimal aptamer surface densities determined, the immobilization chemistry (shared by many detection platforms, e. g., electrochemical, surface acoustic) and the trends identified may be used for rapid rational optimization of aptamer‐target assays.  相似文献   

19.
Combining the inhibited aptazyme and molecular beacon(MB),we developed a versatile sensing strategy for amplified detection of adenosine.In this strategy,the adenosine aptamer links to the 8-17 DNAzyme to form an aptazyme.A short sequence,denoted as inhibitor,is designed to form a duplex spanning the aptamer–DNAzyme junction,which blocks the catalytic function of the DNAzyme.Only in the presence of target adenosine,the aptamer binds to adenosine,thus the inhibitor dissociates from the aptamer portion of the aptazyme and can no longer form the stable duplex required to inhibit the catalytic activity of the aptazyme.The released DNAzyme domain will hybridize to the MB and catalyze the cleavage in the presence of Zn2+,making the fluorophore separate from the quencher and resulting in fluorescence signal.The results showed that the detection method has a dynamic range from 10 nmol/L to 1 nmol/L,with a detection limit of 10 nmol/L.  相似文献   

20.
《Electroanalysis》2018,30(2):378-385
The present work explains the fabrication of a novel electrochemical aptasensor for identifying and measuring the epirubicin (Epi) by using curcumin (Cur) as an anticancer electrochemical indicator. The aptasensor prepared by immobilizing the thiolated aptamer on the surface of graphite screen‐printed electrode modified with gold nanoparticles/functionalized multiwall carbon nanotubes, ionic liquid and chitosan nanocomposite (AuNPs/FMWCNTs‐IL‐Chit/SPE). To evaluate the willingness of aptamer to interaction with Epi in the presence of complementary strand DNA, competitive binding assay between the complementary strand of aptamer and Epi were used. Cur tends to bound to the grooves of two strands DNA. With increasing the concentration of Epi in the range of 0.007–7.0 μM, the peak current of Cur decreased, due to the formation of aptamer‐Epi complex and decreasing the amount of complementary strand DNA. Through the control experiments, we examined the response of fabricated aptasensor for some anticancer drugs, which have a structure similar to the Epi. The results showed that using the thiol‐terminated aptamer as a recognition layer led to a sensor with a high tendency for Epi compared to other anticancer drugs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号