首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
CCSD(T) calculations have been used for identically nucleophilic substitution reactions on N‐haloammonium cation, X? + NH3X+ (X = F, Cl, Br, and I), with comparison of classic anionic SN2 reactions, X? + CH3X. The described SN2 reactions are characterized to a double curve potential, and separated charged reactants proceed to form transition state through a stronger complexation and a charge neutralization process. For title reactions X? + NH3X+, charge distributions, geometries, energy barriers, and their correlations have been investigated. Central barriers ΔE for X? + NH3X+ are found to be lower and lie within a relatively narrow range, decreasing in the following order: Cl (21.1 kJ/mol) > F (19.7 kJ/mol) > Br (10.9 kJ/mol) > I (9.1 kJ/mol). The overall barriers ΔE relative to the reactants are negative for all halogens: ?626.0 kJ/mol (F), ?494.1 kJ/mol (Cl), ?484.9 kJ/mol (Br), and ?458.5 kJ/mol (I). Stability energies of the ion–ion complexes ΔEcomp decrease in the order F (645.6 kJ/mol) > Cl (515.2 kJ/mol) > Br (495.8 kJ/mol) > I (467.6 kJ/mol), and are found to correlate well with halogen Mulliken electronegativities (R2 = 0.972) and proton affinity of halogen anions X? (R2 = 0.996). Based on polarizable continuum model, solvent effects have investigated, which indicates solvents, especially polar and protic solvents lower the complexation energy dramatically, due to dually solvated reactant ions, and even character of double well potential in reactions X? + CH3X has disappeared. © 2011 Wiley Periodicals, Inc. Int J Quantum Chem, 2011  相似文献   

2.
According to the X-ray diffraction data, the crystal and molecular structure of tris(2-hydroxyethyl) ammonium fluoride (F?N+H(CH2CH2OH)3, fluoroprotatrane, substantially differs from other halo protatranes X?N+H(CH2CH2OH)3 (X = Cl, Br, and I). At X = F, to the endo-molecular LP of the nitrogen atom the HF molecule having the minimum ionic radius in a series of X? anions is bonded. The geometry of fluoroprotatrane and the cation packing in the crystal are analyzed.  相似文献   

3.
Some cobalt(II) complexes of 4,6-dimethylpyrimidine-2(1H)-one (HL) have been prepared and studied by infrared and electronic spectra and by magneto-chemical and conductometric measurements. The ligand is coordinated through the unprotonated ring-nitrogen atom and in one case also through the carbonylic oxygen atom. The “blue” complexes [CoX2 · 2HL] (X2 = Cl2, ClBr, Br2, (NCS)2) and [CoX2 · 2HL] · 2HL (X = Cl, Br) have a distorted C2v [CoX2N2] coordination; the thiocyanate ion is N-bonded to the metal. The “green” complexes CoX2 · 2HL (X = Cl(4H2O), Br) have a square-pyramidal [CoX2N2O] coordination. The “pink” CoX2 · 4HL · nH2O (X = ClO4, n = 2; X = BF4, n = 8; X = F3Ac, n = 4) and “cream” CoX2 · 4HL · 6 H2O (X = I, ClO4) complexes have an octahedral coordination; only the F3Ac? ion is coordinated. The “cyclamen” CoAcL · 2HL · 2 H2O and Co3Ac4L2 · 2HL · 2H2O complexes have a polynuclear constitution; the Ac? ion behaves as bidentate ligand.  相似文献   

4.
From suitable perhalophenyl derivatives of palladium(II), viz.: Pd(C6F5)2-(SC4H8)2, [Pd(μ-X′) (C6X5)2]2(NBu4)2, [Pd(μ-Cl)(C6X5)(SC4H8)]2 (X = F, Cl, X′ = Cl, Br), new complexes of various types have been prepared, viz.: trans-Pd(C6F5)2(Y)2, Pd(C6X5)2(Y), PdCl(C6X5)(Y) (X = F, Cl). The neutral ligand Y is a keto-stabilized phosphorus ylide of the type Ph2P(CH2)nPPh2CHC(O)R (n = 1, R = CH3, C6H5; n = 2, R = C6H5) acting in a terminal monodentate P-donor or a bidentate chelate P,C-donor mode. The reaction of PdCl(C6F5)(Y) complexes with HCl leads to the corresponding PdCl2(C6F5)(YH) complexes in which the phosphonium cation [YH]+ behaves as monodentate P-donor at its phosphinic end.IR and 31P NMR spectroscopy were used to decide the coordination mode of the ligands and, in some cases, to reveal the presence of two isomers.  相似文献   

5.
Electron transfer from state-selected Ar** (ns, nd) Rydberg atoms to neutral (N2O) m and (CF3Cl) m clusters has been studied for principal quantum numbersn between 10 and 45. The dominant product ions are (N2O) q ·O? and, dependent on stagnation pressure, (CF3Cl) q ·Cl? or (CF3Cl) q ·FCl?, respectively. In both cases we observe a strongn-dependence of the negative cluster ion spectra. While for lown, broad ion distributions are observed, much narrower distributions are found for highn, especially for N2O negative cluster ions around the dominant species (N2O)6·O?, corresponding to a remarkably size-selective process. Possible reasons for this behaviour are briefly discussed.  相似文献   

6.
Ruthenium(II) Phthalocyaninates(2–): Synthesis and Properties of (Acido)(carbonyl)phthalocyaninato(2–)ruthenate(II), [Ru(X)(CO)Pc2?]? (X = Cl, Br, I, NCO, NCS, N3) (nBu4N)[Ru(OH)2Pc2?] is reduced in acetone with carbonmonoxid to blue-violet [Ru(H2O)(CO)Pc2?], which yields in tetrahydrofurane with excess (nBu4N)X acido(carbonyl)phthalocyaninato(2–)ruthenate(II), [Ru(X)(CO)Pc2?]? (X = Cl, Br, I, NCO, NCS, N3) isolated as red-violet, diamagnetic (nBu4N) complex salt. The UV-Vis spectra are dominated by the typical π-π* transitions of the Pc2? ligand at approximately 15100 (B), 28300 (Q1) und 33500 cm?1 (Q2), only fairly dependent of the axial ligands. v(C? O) is observed at 1927 (X = I), 1930 (Cl, Br), 1936 (N3, NCO) 1948 cm?1 (NCS), v(C? N) at 2208 cm?1 (NCO), 2093 cm?1 (NCS) and v(N? N) at 2030 cm?1 only in the MIR spectrum. v(Ru? C) coincides in the FIR spectrum with a deformation vibration of the Pc ligand, but is detected in the resonance Raman(RR) spectrum at 516 (X = Cl), 512 (Br), 510 (N3), 504 (I), 499 (NCO), 498 cm?1 (NCS). v(Ru? X) is observed in the FIR spectrum at 257 (X = Cl), 191 (Br), 166 (I), 349 (N3), 336 (NCO) and 224 cm?1 (NCS). Only v(Ru? I) is RR-enhanced.  相似文献   

7.
Gas‐phase anionic reactions X? + CH3SY (X, Y = F, Cl, Br, I) have been investigated at the level of B3LYP/6‐311+G (2df,p). Results show that the potential energy surface (PES) of gas‐phase reactions X? + CH3SY (X, Y = Cl, Br, I) has a quadruple‐well structure, indicating an addition–elimination (A–E) pathway. The fluorine behaves differently in many respects from the other halogens and the reactions F? + CH3SY (Y = F, Cl, Br, I) correspond to deprotonation instead of substitution. The gas‐phase reactions X? + CH3SF (X = Cl, Br, I), however, follow an A–E pathway other than the last two out going steps (COM2 and PR) that proceeds via a deprotonation. The polarizable continuum model (PCM) has been used to evaluate the solvent effects on the energetics of the reactions X? + CH3SY (X, Y = Cl, Br, I). The PES is predicted to be unimodal in the solvents of high polarity. © 2007 Wiley Periodicals, Inc. Int J Quantum Chem, 2007  相似文献   

8.
An analysis of thermochemical and kinetic data on the bromination of the halomethanes CH4–nXn (X = F, Cl, Br; n = 1–3), the two chlorofluoromethanes, CH2FCl and CHFCl2, and CH4, shows that the recently reported heats of formation of the radicals CH2Cl, CHCl2, CHBr2, and CFCl2, and the C? H bond dissociation energies in the matching halomethanes are not compatible with the activation energies for the corresponding reverse reactions. From the observed trends in CH4 and the other halomethanes, the following revised ΔH°f,298 (R) values have been derived: ΔH°f(CH2Cl) = 29.1 ± 1.0, ΔH°f(CHCl2) = 23.5 ± 1.2, ΔHf(CH2Br) = 40.4 ± 1.0, ΔH°f(CHBr2) = 45.0 ± 2.2, and ΔH°f(CFCl2) = ?21.3 ± 2.4 kcal mol?1. The previously unavailable radical heat of formation, ΔH°f(CHFCl) = ?14.5 ± 2.4 kcal mol?1 has also been deduced. These values are used with the heats of formation of the parent compounds from the literature to evaluate C? H and C? X bond dissociation energies in CH3Cl, CH2Cl2, CH3Br, CH2Br2, CH2FCl, and CHFCl2.  相似文献   

9.
To probe the kinetic performance of microsolvated α‐nucleophile, the G2(+)M calculations were carried out for the gas‐phase SN2 reactions of monohydrated and dihydrated α‐oxy‐nucleophiles XO?(H2O)n = 1,2 (X = HO, CH3O, F, Cl, Br), and α‐sulfur‐nucleophile, HSS?(H2O)n = 1,2, toward CH3Cl. We compared the reactivities of hydrated α‐nucleophiles to those of hydrated normal nucleophiles. Our calculations show that the α‐effect of monohydrated and dihydrated α‐oxy‐nucleophiles will become weaker than those of unhydrated ones if we apply a plot of activation barrier as a function of anion basicity. Whereas the enhanced reactivity of monohydrated and dihydrated ROO? (R = H, Me) could be observed if compared them with the specific normal nucleophiles, RO? (R = H, Me). This phenomena can not be seen in the comparisons of XO?(H2O)n = 1,2 (X = F, Cl, Br) with ClC2H4O?(H2O)n = 1,2, a normal nucleophile with similar gas basicity to XO?(H2O)n = 1,2. These results have been carefully analyzed by natural bond orbital theory and activation strain model. Meanwhile, the relationships between activation barriers with reaction energies and the ionization energies of α‐nucleophile are also discussed. © 2015 Wiley Periodicals, Inc.  相似文献   

10.
Crossed beams of energetic cesium atoms (25–350 eV) and thermal Cf3X (X = Cl, Br and I) produce X? and F? as the major anions. The intensity ratio (F?/X?) is measured as a function of energy. A hard-sphere stripping model is in reasonable accord with the data.  相似文献   

11.
The ion‐pair SN2 reactions of model systems MnFn?1+CH3Cl (M+=Li+, Na+, K+, and MgCl+; n=0, 1) have been quantum chemically explored by using DFT at the OLYP/6‐31++G(d,p) level. The purpose of this study is threefold: 1) to elucidate how the counterion M+ modifies ion‐pair SN2 reactivity relative to the parent reaction F?+CH3Cl; 2) to determine how this influences stereochemical competition between the backside and frontside attacks; and 3) to examine the effect of solvation on these ion‐pair SN2 pathways. Trends in reactivity are analyzed and explained by using the activation strain model (ASM) of chemical reactivity. The ASM has been extended to treat reactivity in solution. These findings contribute to a more rational design of tailor‐made substitution reactions.  相似文献   

12.
Fluoridolysis of Diphosphoryl Compounds The behaviour of diphosphoryl compounds [X2(O)P]2Y in fluoridolysis reactions is decisively determined by the nature of the bridging group Y. In the cases of Y = NH and CH2 and X = Cl [F2P(O)]2N? and [F2P(O)]2CH2 are obtained quantitatively. For Y = NPh, O, and CH2 the formation of phosphorylated pentafluorophosphates [F5P? Y? POX2]? is observed. Amido and ester derivatives containing fluorine (see table 2) are obtained from the corresponding chloro compounds by Cl/F exchange. Fluoridolysis of the azadiphosphetidine 19 results in the formation of acyclic 19 a .  相似文献   

13.
Anation reactions of the type [Pd(L)(H2O)]2+ + X? »[Pd(L)X]+ + H2O with L = 1, 4, 7-Et3dien, 1, 1, 7, 7-Me4dien and 1, 1, 4, 7, 7-Me5dien and X? = Cl?, Br?, I? and N3? have been studied kinetically as a function of [X?], temperature and pressure (up to 1 kbar). Second-order anation rate constants decrease with an increase in the size of L, and are accompanied by an increase in ΔH≠. For a given L the sequence Cl? < Br? < I? < N3? holds, and the values of ΔS≠ and ΔV≠ are consistent with an associative mechanism. The results are discussed with reference to similar anation reactions previously investigated.  相似文献   

14.
Abstract

The infrared spectra of the complexes M(aq)2(H2O)2X2 (M = Fe, Co, Ni, Cu; aq = 8-aminoquinoline; X =Cl, Br) have been determined over the range 4000-50 cm?1. Absence of vM-X bands indicates that the halide is not coordinated to the metal ion and the complexes are correctly formulated [M(aq)2-(H2O)2]X2. Deuteration of the amino group and the effects of metal ion substitution enable assignment of the vM-NH2, vM-N and vM-OH2 modes as well as the amino group vibrations. 18 O-Labelling assists in identifying the vO-H, vO-H……X and δO-H bands. The spectra are consistent with trans-octahedral coordination and axial bonding of the water molecules. The far infrared spectra of the mono(aminoquinoline) complexes [M(aq)X2]n (M = Cu, Zn; X = Cl, Br) are consistent with the proposed structure of polymeric octahedral coordination involving both bridging and terminal M-X bonds. The vM-NH2, vM-N, vM-X(terminal) and vM-X(bridging) bands are assigned by studying the effects of amino group deuteration, metal ion substitution and halide substitution.  相似文献   

15.
The infrared spectra of eighteen metal complexes of empirical formula [ML2X2] (M = Co, Ni, Cu or Zn; L = o? or m-toluidine; X = Cl, Br or I) have been determined over the range 4000-150 cm?1. Assignments of the internal vibrations of the amino group are based on the band shifts induced by 15N-labelling of the nitrogen donors. Bands within the range 400–600 cm?1 are assigned to the metal-nitrogen stretching frequency (vM-N) on the grounds of their sensitivity to 15N-labelling and metal ion substitution and their absence of sensitivity to halide substitution. Bands within the range 350–150 cm?1 are assigned to the metal-halogen stretching frequency (vM-X) on the basis of their sensitivity to halide and metal ion substitution and their insensitivity to 15N-labelling. Structural aspects of the spectra are discussed and the present assignments are compared with those previously reported.  相似文献   

16.
BrCF2X (X : Cl, Br, BrCF2) react wth enamines and ynamines. A radical chain mechanism is proposed. Halogen (Br or Cl) - fluorine exchange of α halodifluoromethylketones to α trifluoromethylketones using Bu4+N, F?, 3H2O is examined.  相似文献   

17.
Preparation and Spectroscopic Characterization of the Fluorophosphonium Salts X2FPSCH3+MF6? (X = Br, Cl; M = As, Sb) and XF2PSCH3+SbF6? (X = Br, Cl, F) The preparation of the fluorophosphonium salts X2FPSCH3+MF6? (X = Br, Cl; M = As, Sb) and XF2PSCH3+SbF6? (X = Br, Cl, F) by methylation of the corresponding thiophosphorylhalides in the system CH3F/SO2/MF5 (M = As, Sb) is reported. The new salts are characterized by their vibrational and NMR spectra.  相似文献   

18.
Standard thermodynamic values of proton ionisation of 3 substituted (Cl?, Br?, I?, C2H5? and CH2CN?) pyridine derivatives are determined at 25°C, in an aqueous medium of ionic strength 0.5 M KNO3.Free energies are deduced from equilibrium constants log K potentiometrically calculated. Enthalpies are obtained from calorimetric measurements.ΔGo, ΔHo and ΔSo values are discussed in the context of the results of our earlier studies on this subject.The Hammett plot corresponding to the thirteen systems examined gives the proton ionisation constant of a substituted pyridine from the equation log K = 5,48 – 5,94Σσ.Besides, a linear relationship is found between ΔGo and ΔHo, which confirms the observation made previously in other series of pyridine derivatives.  相似文献   

19.
Complexes of 2-mercapto-1-methylimidazole (TMZ) with PdII and PtII of the general formula M(TMZ)nX2 (whereM=Pd, Pt andX=Cl, Br, I or SO4 andn=2 or 4) were obtained. The thermal stabilities of the compounds were estimated by derivatographic measurements and lattice constants were estimated from their X-ray powder diffraction patterns.  相似文献   

20.
The lithium polyfluorobenzenesulphinates, Li O2SR (R = C6F5, p-HC6F4, m-HC6F4, or o-HC6F4), and the dilithium tetrafluorobenzenedisulphinates, p- and o-(LiO2S)2C6F4, have been prepared by reaction of the appropriate polyfluoroaryllithium compounds with sulphur dioxide. All compounds were isolated as hydrates and gave the corresponding S-benzylthiouronium salts on treatment with S-benzylthiouronium chloride. From reactions of the lithium sulphinates with suitable mercuric salts in water, generally at room temperature, the derivatives RHgX (R = C6F5, X = Cl, Br, CH3CO2, or PhSO2; R = p-HC6F4, X = Cl, Br, or CH3CO2; R = m-HC6F4, X = Cl or Br; R = o-HC6F4, X = Cl), p-(XHg)2C6F4 (X = Cl, Br, or CH3CO2), and o-(XHg)2C6X4 (X = Cl or Br) have been prepared. Similarly, the bispolyfluorophenylmercurials R2Hg (R = C6F5, p-HC6F4, or m-HC6F4) have been prepared from the corresponding lithium sulphinates and either mercuric salts or polyfluorophenylmercuric halides in aqueous t-butanol. A possible mechanism for the sulphur dioxide elimination reactions is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号