首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Liu W  Wang CF  Li YZ  Zuo JL  You XZ 《Inorganic chemistry》2006,45(25):10058-10065
Using the tricyano precursor, (Bu4N)[(Tp)Fe(CN)3] (Tp = Tris(pyrazolyl) hydroborate) (1), four new tetranuclear clusters, [(Tp)Fe(CN)3Cu(Tp)]2.2H2O (2), [(Tp)Fe(CN)3Cu(bpca)]2.4H2O (3) (bpca = bis(2-pyridylcarbonyl)amidate anion), [(Tp)Fe(CN)3Ni(tren)]2(ClO4)2.2H2O (4) (tren = tris(2-amino)ethylamine), and [(Tp)Fe(CN)3Ni(bipy)2]2[(Tp)Fe(CN)3]2.6H2O (5) (bipy = 2,2'-bipyridine), have been synthesized and structurally characterized. The four clusters possess similar square structures, where FeIII and MII (M = CuII or NiII) ions alternate at the rectangle corners. There exist intermolecular - stacking interactions through pyrazolyl groups of Tp- ligands in complexes 2 and 4, which lead to 1D chain structures. Complex 5 shows a 3D network structure through the coexistence of - stacking effects and hydrogen-bonding interactions. Magnetic studies show intramolecular ferromagnetic interactions in all four clusters. The exchange parameters are +11.91 and +1.38 cm(-1) for clusters 2 and 3, respectively, while uniaxial molecular anisotropy can be detected in complex 3 due to the distorted core in its molecular structure. Complex 4 has a ground state of S = 3 and shows SMM behavior with an effective energy barrier of U = 18.9 cm(-1). Unusual spin-glass-like dynamic relaxations are observed for complex 5.  相似文献   

2.
The generation of metal cyanide ions in the gas phase by laser ablation of M(CN)(2) (M = Co, Ni, Zn, Cd, Hg), Fe(III)[Fe(III)(CN)(6)] x xH(2)O, Ag(3)[M(CN)(6)] (M = Fe, Co), and Ag(2)[Fe(CN)(5)(NO)] has been investigated using Fourier transform ion cyclotron resonance mass spectrometry. Irradiation of Zn(CN)(2) and Cd(CN)(2) produced extensive series of anions, [Zn(n)(CN)(2n+1)](-) (1 < or = n < or = 27) and [Cd(n)(CN)(2n+1)](-) (n = 1, 2, 8-27, and possibly 29, 30). Cations Hg(CN)(+) and [Hg(2)(CN)(x)](+) (x = 1-3), and anions [Hg(CN)(x)](-) (x = 2, 3), are produced from Hg(CN)(2). Irradiation of Fe(III)[Fe(III)(CN)(6)] x xH(2)O gives the anions [Fe(CN)(2)](-), [Fe(CN)(3)](-), [Fe(2)(CN)(3)](-), [Fe(2)(CN)(4)](-), and [Fe(2)(CN)(5)](-). When Ag(3)[Fe(CN)(6)] is ablated, [AgFe(CN)(4)](-) and [Ag(2)Fe(CN)(5)](-) are observed together with homoleptic anions of Fe and Ag. The additional heterometallic complexes [AgFe(2)(CN)(6)](-), [AgFe(3)(CN)(8)](-), [Ag(2)Fe(2)(CN)(7)](-), and [Ag(3)Fe(CN)(6)](-) are observed on ablation of Ag(2)[Fe(CN)(5)(NO)]. Homoleptic anions [Co(n)(CN)(n+1)](-) (n = 1-3), [Co(n)(CN)(n+2)](-) (n = 1-3), [Co(2)(CN)(4)](-), and [Co(3)(CN)(5)](-) are formed when anhydrous Co(CN)(2) is the target. Ablation of Ag(3)[Co(CN)(6)] yields cations [Ag(n)(CN)(n-1)](+) (n = 1-4) and [Ag(n)Co(CN)(n)](+) (n = 1, 2) and anions [Ag(n)(CN)(n+1)](-) (n = 1-3), [Co(n)(CN)(n-1)](-) (n = 1, 2), [Ag(n)Co(CN)(n+2)](-) (n = 1, 2), and [Ag(n)Co(CN)(n+3)](-) (n = 0-2). The Ni(I) species [Ni(n)(CN)(n-1)](+) (n = 1-4) and [Ni(n)(CN)(n+1)](-) (n = 1-3) are produced when anhydrous Ni(CN)(2) is irradiated. In all cases, CN(-) and polyatomic carbon nitride ions C(x)N(y)(-) are formed concurrently. On the basis of density functional calculations, probable structures are proposed for most of the newly observed species. General structural features are low coordination numbers, regular trigonal coordination stereochemistry for d(10) metals but distorted trigonal stereochemistry for transition metals, the occurrence of M-CN-M and M(-CN-)(2)M bridges, addition of AgCN to terminal CN ligands, and the occurrence of high spin ground states for linear [M(n)(CN)(n+1)](-) complexes of Co and Ni.  相似文献   

3.
Electrospray ionization mass spectra of equimolar solutions of dithioalkyl ketene acetals 1 and 2 and metal chlorides (MgCl(2), MnCl(2), ZnCl(2), CoCl(2), NiCl(2) and CuCl(2)) produced abundant ligated metal ion adducts [1 + MCl](+) and [2 + MCl](+). In addition, CuCl(2) also gave rise to Cu(+) adducts. The ligated metal ion adducts upon collision-induced dissociation (CID) showed characteristic fragmentation pathways reflecting the favoured site of coordination. The results show that MgCl(+) prefers oxygen over sulfur, whereas the reverse is true for ZnCl(+) adducts, exemplified by the preferred fragmentation of [1 + MgCl](+) as elimination of MgCl(OH), while that of [1 + ZnCl](+) is expulsion of ZnCl(SCH(3)). Co and Ni chloride adducts tend to give stable metal coordinated species. Cleavage of the dithiolane ring followed by elimination of C(2)H(4)S is the preferred pathway during the CID of [2 + MCl](+) adducts. The CuCl(+) adducts of 1 and 2 showed reduction of Cu((I)) to Cu((0)) resulting in the M(+)(*)ions of 1 and 2. Abstraction of *CH(3) resulting in elimination of CuCH(3) was observed during CID of Cu(+) adducts of 1 and 2. A comparative study of the corresponding Ag(+) adducts revealed a similar behaviour.  相似文献   

4.
Complexing processes in MII-N-diisopropoxythiophosphorylthiobenzamide binary systems (M = Co, Ni, Cu) in metal(II) hexacyanoferrate(II) gelatin-immobilized matrices upon contact with aqueous–alkaline (pH = 12.0 ± 0.1) solutions of organic compounds have been studied. It has been shown that, in CoII and CuII, the initial act of complexing involves destruction of the CoII and CuII hexacyanoferrates(II) by OH ions, leading to formation of the corresponding hydroxides which react with the ligand indicated. In the both systems, successive addition of two ligand molecules per M(OH)2 fragment occurs and [MB(OH)(OH2)] and [MB2] coordination compounds are formed (B-a singly deprotonated ligand form). In the NiII-N-diisopropoxythiophosphorylthiobenzamide system, the formation of three complexes, (Ni2BOH)2[Fe(CN)6], [NiB(OH)(OH2)] and [NiB2] occurs.  相似文献   

5.
The core ions [ML(n)]2+ with n = 1-3, where L = 1,10-phenanthroline and M is a first-row transition metal, have been successfully transferred from aqueous solution into the gas phase by electrospraying and then probed for their stabilities by collision-induced dissociation in a triple quadrupole mass spectrometer. The triply ligated metal dications [ML3]2+ were observed to dissociate by the extrusion of a neutral ligand, while ligand loss from both [ML2]2+ and [ML]2+ was accompanied by electron transfer. Comparisons are provided between gas-phase stabilities and stabilities for ligand loss measured in aqueous solution at 298 K. The measured onset for ligand loss from [ML3]2+ is quite insensitive to the metal, while a distinct stability order has been reported for aqueous solution. Low level density functional theory (DFT) calculations predict an intrinsic stability order for loss of ligand from [ML2]2+, but it differs from that in aqueous solution. Substantial agreement was obtained for the stability order for the loss of ligand from [ML]2+ deduced from onset energies measured for charge separation, computed with DFT, and reported for aqueous solution where hydration seems less decisive in influencing this stability order. A qualitative potential-energy diagram is presented that allows the energy for charge separation to be related to the energy for neutral ligand loss from [ML]2+ and shows that IE(M+) is decisive in determining the intrinsic stability order for loss of ligand from [ML]2+.  相似文献   

6.
The porosity and hydrogen storage properties for the dehydrated Prussian blue analogues M3[Co(CN)6]2 (M = Mn, Fe, Co, Ni, Cu, Zn) are reported. Argon sorption isotherms measured at 87 K afford BET surface areas ranging from 560 m2/g for Ni3[Co(CN)6]2 to 870 m2/g for Mn3[Co(CN)6]2; the latter value is comparable to the highest surface area reported for any known zeolite. All six compounds show significant hydrogen sorption at 77 K and 890 Torr, varying from 1.4 wt % and 0.018 kg H2/L for Zn3[Co(CN)6]2 to 1.8 wt % and 0.025 kg H2/L for Cu3[Co(CN)6]2. Fits to the sorption data employing the Langmuir-Freundlich equation give maximum uptake quantities, resulting in a predicted storage capacity of 2.1 wt % and 0.029 kg H2/L for Cu3[Co(CN)6]2 at saturation. Enthalpies of adsorption for the frameworks were calculated from hydrogen isotherms measured at 77 and 87 K and found to increase with M varying in the order Mn < Zn < Fe < Co < Cu < Ni. In all cases, the binding enthalpies, which lie in the range of 5.3-7.4 kJ/mol, are higher than the 4.7-5.2 kJ/mol measured for Zn4O(1,4-benzenedicarboxylate)3.  相似文献   

7.
MH~+(M=Fe,Co,Ni)催化二氧化碳的氢化反应   总被引:1,自引:0,他引:1  
在密度泛函理论的B3LYP水平下计算了MH~+(M=Fe,Co,Ni)催化二氧化碳的氢化反应.研究表明,氢转移至C上要比转移至O上容易得多.探讨不同泛函方法对反应的影响,从CCSD(T)的计算结果可见,与Co H~+和Ni H~+相比,Fe H~+对H转移至C上的活性较高.电子结构分析表明,反应过程中氢转移为氢负离子转移.  相似文献   

8.
The mononuclear Re(IV) compound of formula (PPh(4))(2)[ReBr(4)(mal)] (1) was used as a ligand to obtain the heterobimetallic species [ReBr(4)(μ-mal)Co(dmphen)(2)]· MeCN (2), [ReBr(4)(μ-mal)Ni(dmphen)(2)] (3), [ReBr(4)(μ-mal)Mn(dmphen)(2)] (4a), [ReBr(4)(μ-mal)Mn(dmphen)(H(2)O)(2)]·dmphen·MeCN·H(2)O (4b), [ReBr(4)(μ-mal)Cu(phen)(2)]·1/4H(2)O (5) and [ReBr(4)(μ-mal)Cu(bipy)(2)] (6) (mal = malonate dianion, dmphen = 2,9-dimethyl-1,10-phenanthroline, phen = 1,10-phenanthroline and bipy = 2,2'-bipyridine). The structures of 2 and 5 (single-crystal X-ray diffraction) are made up of neutral [ReBr(4)(μ-mal)M(AA)] dinuclear units [AA = dmphen with M = Co (2) and AA = phen with M = Cu (5)] where the metal ions are connected through a malonate ligand which exhibits simultaneously the bidentate [at the Re(IV)] and monodentate [at the M(II)] coordination modes. The carboxylate-malonate group in them adopts the anti-syn conformation with intramolecular ReM separation of 5.098(8) (2) and 4.947(2) ? (5). The magnetic properties of 1-6 were investigated in the temperature range 1.9-295 K. The magnetic behaviour of 1 is the expected for a magnetically isolated Re(IV) complex with a large value of the zero-field splitting (2D ca. -70 cm(-1)) whereas weak antiferromagnetic interactions between Re(IV) and M(II) are observed in the heterobimetallic compounds 2 (J = -0.63 cm(-1)), 3 (J = -1.37 cm(-1)), 4a (J = -1.29 cm(-1)), 5 (J = -1.83 cm(-1)) and 6 (J = -0.26 cm(-1)). Remarkably, 4b behaves as a ferrimagnetic chain with regular alternating Re(IV) and Mn(II) cations (J = -2.64 cm(-1)).  相似文献   

9.
The title compounds form an iso structural series and are isomorphic with other [MPy4X2]-2Py clathrates (XRD, KM4 diffractometer, cell parameters and space group Ccca from 17–80 reflections). In the clathrate [NiPy4(NCO)2]-2Py studied in detail (XRD, CAD-4 diffractom eter, λCuKα, Ω/2θ scan mode, θmax = 78‡, 990 strong reflections, 104 parameters, R = 0.053), the host molecule has 222 symmetry, and the twofold axes run along the coordination bonds. The transoctahedral environment of nickel consists of six nitrogen atoms of four pyridine and two isocyanate ligands. The coordination polyhedron is slightly distorted due to changes in the bond lengths. The molecule has a propeller conformation. The guest molecules lie in the cavities of the crystal structure in conformity with the van der Waals type of packing. The host complex [NiPy4(NCO)2] (XRD, CAD-4 diffractometer, 4615 strong reflections, 560 parameters, R-0.037) crystallizes in the triclinic crystal system (space group P1) with two independent asymmetric molecules in the unit cell. The molecular structure is analogous to that in the ciathrate phase, but the coordination angles are severely distorted; one of the molecules acquires a distorted propeller conformation, and the other, a centrosvmmetric conformation, which is less favorable. While being structurally identical, the [MPy4(NCO)2]-2Py clathrates differ heavily in the properties. The first four complexes dissociate to host complexes, and their thermal stability changes in the sequence Mn< Fe< Co< Ni; the Cu and Zn clathrates decompose in one step to dipyridine complexes with decomposition of host complexes. Decomposition of the Cd ciathrate follows one of these patterns depending on conditions. The results are compared with those for other known systems. Synthetic procedures are given. Translated fromZhurnal Strukturnoi Khimii, Vol. 40, No. 5, pp. 935–953, September–October, 1999.  相似文献   

10.
Monodisperse MFe2O4 (M = Fe, Co, Mn) nanoparticles   总被引:16,自引:0,他引:16  
High-temperature solution phase reaction of iron(III) acetylacetonate, Fe(acac)(3), with 1,2-hexadecanediol in the presence of oleic acid and oleylamine leads to monodisperse magnetite (Fe(3)O(4)) nanoparticles. Similarly, reaction of Fe(acac)(3) and Co(acac)(2) or Mn(acac)(2) with the same diol results in monodisperse CoFe(2)O(4) or MnFe(2)O(4) nanoparticles. Particle diameter can be tuned from 3 to 20 nm by varying reaction conditions or by seed-mediated growth. The as-synthesized iron oxide nanoparticles have a cubic spinel structure as characterized by HRTEM, SAED, and XRD. Further, Fe(3)O(4) can be oxidized to Fe(2)O(3), as evidenced by XRD, NEXAFS spectroscopy, and SQUID magnetometry. The hydrophobic nanoparticles can be transformed into hydrophilic ones by adding bipolar surfactants, and aqueous nanoparticle dispersion is readily made. These iron oxide nanoparticles and their dispersions in various media have great potential in magnetic nanodevice and biomagnetic applications.  相似文献   

11.
A series of complexes of stoichiometry [MX2(dipyS)] {dipyS = bis(2–picolyl)-1,3–dithiopropane); M=Cr, Mn, Fe, Co, Ni, X=Cl; M=Ni or Cu, X=NO3} and [VOCl(dipyS)]Cl have been prepared and characterised, including the X-ray crystal structure of [Ni(ONO2)2(dipyS)]. The kinetics of the transfer of dipyS from these complexes (M=Cr, Mn, Fe, Co or Ni) to Cu2+, to form [Cu(dipyS)]2+, have been studied in MeOH. For M=Ni, the kinetics are consistent with a mechanism involving rate-limiting dissociation of the initial pyridyl—M bond. Subsequent binding of Cu2+ to the pendant pyridyl-residue (or binding Cl– to the vacant site on M) is followed by the complete transfer of dipyS from M to Cu. For M=Cr, Mn or Co, the same mechanism is believed to operate, but in these cases intermediates in the dipyS transfer to Cu2+ have been detected spectroscopically. Evidence is presented that these intermediates have Cu2+ bound to a pendant pyridyl-group on [MCl2(dipyS)] and that the subsequent complete transfer of dipyS involves rate-limiting dissociation of a M—S bond. For M=Fe, e.p.r. spectroscopy shows that the complex is a dimer in solution. However, the transfer reaction with Cu2+ involves an analogous intermediate to that with M=Cr, Mn or Co, but only at high concentrations of Cu2+. Unexpectedly, the binding of Cu2+ inhibits the transfer of dipyS from Fe to Cu. The electronic factors which give rise to this behaviour are discussed.  相似文献   

12.
Formation, crystal structure, polymorphism, and transition between polymorphs are reported for M(thd)3, (M = Al, Cr, Mn, Fe, Co, Ga, and In) [(thd) = anion of H(thd) = C11H20O2 = 2, 2, 6, 6‐tetramethylheptane‐3, 5‐dione]. Fresh crystal‐structure data are provided for monoclinic polymorphs of Al(thd)3, Ga(thd)3, and In(thd)3. Apart from adjustment of the M–Ok bond length, the structural characteristics of M(thd)3 complexes remain essentially unaffected by change of M. Analysis of the M–Ok, Ok–Ck, and Ck–Ck distances support the notion that the M–Ok–Ck–Ck–Ck–Ok– ring forms a heterocyclic unit with σ and π contributions to the bonds. Tentative assessments according to the bond‐valence or bond‐order scheme suggest that the strengths of the σ bonds are approximately equal for the M–Ok, Ok–Ck, and Ck–Ck bonds, whereas the π component of the M–Ok bonds is small compared with those for the Ok–Ck, and Ck–Ck bonds. The contours of a pattern for the occurrence of M(thd)3 polymorphs suggest that polymorphs with structures of orthorhombic or higher symmetry are favored on crystallization from the vapor phase (viz. sublimation). Monoclinic polymorphs prefer crystallization from solution at temperatures closer to ambient. Each of the M(thd)3 complexes subject to this study exhibits three or more polymorphs (further variants are likely to emerge consequent on systematic exploration of the crystallization conditions). High‐temperature powder X‐ray diffraction shows that the monoclinic polymorphs convert irreversibly to the corresponding rotational disordered orthorhombic variant above some 100–150 °C (depending on M). The orthorhombic variant is in turn transformed into polymorphs of tetragonal and cubic symmetry before entering the molten state. These findings are discussed in light of the current conceptions of rotational disorder in molecular crystals.  相似文献   

13.
Powder-susceptibility measurements in the temperature region 2–80° K on the chain compounds MII(N2H5)2(SO4)2, with M = Mn, Fe, Co, Ni, and Cu, show that the magnetic properties of these compounds can be interpreted in terms of antiferromagnetic linear-chain systems. The experimental results provide information on the magnitude of the intrachain interactions. In addition, ESR linewidth experiments were used for a determination of the intrachain interaction in Mn(N2H5)2 (SO4)2. For the interpretation of the data on Fe(N2H5)2(SO4)2, the parallel susceptibility of Ising chains with S = 2 is calculated theoretically. An estimate for the ratio between the intra- and interchain coupling is given. Use is made of preliminary results of specific heat measurements on these compounds for the interpretation of the magnetic data.  相似文献   

14.
Using a laser ablation/inert buffer gas ion source coupled with a reflectron time-of-flight mass spectrometer, the gas-phase reactions between the IVA group element ions M(+) (M = Si, Ge, Sn and Pb) and benzene seeded in argon gas were studied. In addition to the association reaction pathway (forming [M(C(6)H(6))(x)](+), x = 1, 2, etc.), benzene was dissociated to form complex ions [M(C(5)H(5))](+), [M(C(7)H(5))](+) and [M(C(9)H(x))](+) (x = 5, 7 and 9), etc. DFT theoretical calculations indicated that, in the association products [M(C(6)H(6))](+), the M atom is close to one carbon atom of benzene, while in most of the dissociation complexes, pentagonal structures (M/cyclopentadienyl derivatives) were formed, with the M atom situated near the fivefold axis of the five-membered ring. The bond patterns in these complexes are discussed.  相似文献   

15.
We have studied the protonated ether-(H2O)n (n = 1-3) complexes containing tetrahydrofuran, dimethyl, diethyl, dibutyl, and butylmethyl ethers using a flowing afterglow triple-quadrupole mass spectrometer. Collision-induced dissociation, CID, of all clusters with n = 1, 2 shows sequential water loss. The n = 3 cluster of dimethyl ether shows sequential water loss, while all other ether clusters display selective product formation. The CID spectra are interpreted based on known energetics, and theoretical studies of the dimethyl and diethyl ether systems.  相似文献   

16.
Neutron diffraction, at 2 K, of R-NiF3 indicates the formulation approaches NiIINiIVF6, with NiII − F = 1.959(3) and NiIV − F = 1.811(3) Å, but 295 K data allow for only a slight increase in any NiIII. Relatives have been precipitated from liquid anhydrous HF, at ≤ 20 °C, by adding K2NiF6 to M(SbF6)2 (M = Co, Cu, Zn) or M(AsF6)2 (M = Fe). CuNiF6 like NiNiF6 is metastable and loses F2 easily, above 40 °C. CuNiF6 is reduced by Xe or C3F6 at −20 °C; CoNiF6 by H2 at 350 °C, each giving pseudo-rutile MNiF4. Magnetic data indicate the dominant formulation is MIINiIVF6 (Ni(IV) low spin d6) with field dependence in CoNiF6 (≤ 220 K) and FeNiF6 (≤ 295 K).  相似文献   

17.
A series of Werner complexes featuring the tridentate ligand smif, that is, 1,3-di-(2-pyridyl)-2-azaallyl, have been prepared. Syntheses of (smif)(2)M (1-M; M = Cr, Fe) were accomplished via treatment of M(NSiMe(3))(2)(THF)(n) (M = Cr, n = 2; Fe, n = 1) with 2 equiv of (smif)H (1,3-di-(2-pyridyl)-2-azapropene); ortho-methylated ((o)Mesmif)(2)Fe (2-Fe) and ((o)Me(2)smif)(2)Fe (3-Fe) were similarly prepared. Metatheses of MX(2) variants with 2 equiv of Li(smif) or Na(smif) generated 1-M (M = Cr, Mn, Fe, Co, Ni, Zn, Ru). Metathesis of VCl(3)(THF)(3) with 2 Li(smif) with a reducing equiv of Na/Hg present afforded 1-V, while 2 Na(smif) and IrCl(3)(THF)(3) in the presence of NaBPh(4) gave [(smif)(2)Ir]BPh(4) (1(+)-Ir). Electrochemical experiments led to the oxidation of 1-M (M = Cr, Mn, Co) by AgOTf to produce [(smif)(2)M]OTf (1(+)-M), and treatment of Rh(2)(O(2)CCF(3))(4) with 4 equiv Na(smif) and 2 AgOTf gave 1(+)-Rh. Characterizations by NMR, EPR, and UV-vis spectroscopies, SQUID magnetometry, X-ray crystallography, and DFT calculations are presented. Intraligand (IL) transitions derived from promotion of electrons from the unique CNC(nb) (nonbonding) orbitals of the smif backbone to ligand π*-type orbitals are intense (ε ≈ 10,000-60,000 M(-1)cm(-1)), dominate the UV-visible spectra, and give crystals a metallic-looking appearance. High energy K-edge spectroscopy was used to show that the smif in 1-Cr is redox noninnocent, and its electron configuration is best described as (smif(-))(smif(2-))Cr(III); an unusual S = 1 EPR spectrum (X-band) was obtained for 1-Cr.  相似文献   

18.
Magnetic susceptibilities of a series of ternary intermetallic compounds of the general composition ThM2X2(M = Cr, Mn, Fe, Co, Ni and Cu; X = Si and Ge) were determined by means of FARADAY method in the temperature interval 100–570°K. The results confirm the previously proposed magnetic behaviour of these compounds, based on the observation of the basic crystallographic parameters as a function of the atomic number of the transition metal element. The compounds were found to be alternatively ferromagnetics and antiferromagnetics depending on the atomic number of the transition metal atom.  相似文献   

19.
A series of tetragonally distorted square pyramids of formula N2S2M(NO) (M = Fe, Co) is prepared and characterized by nu(NO) IR and EPR spectroscopies, magnetism and electrochemical properties, as well as solid-state crystal structure determinations. While the nu(NO) IR frequencies and the angleM-N-O angles indicate differences in the electronic environment of NO consistent with the Enemark-Feltham notation of [Fe(NO)]7 and [Co(NO)]8, the reduction potentials, assigned to [Fe(NO)]7 + e- <==> [Fe(NO)]8 and [Co(NO)]8 + e- <==> [Co(NO)]9 respectively, are very similar, and in cases identical, for most members of the series. Coupled with the potential for the M(NO) units to breathe out of and into the N2S2 core plane are unique S-M-N-O torsional arrangements and concomitant pi-bonding interactions which may account for the unusual coherence of reduction potentials within the series.  相似文献   

20.
The heterobimetallic complexes [Mn((i)PrNPPh(2))(3)Cu((i)PrNHPPh(2))] (1) and [Fe((i)PrNPPh(2))(3)Cu((i)PrNHPPh(2))] (2) have been synthesized by the one pot reaction of LiN(i)PrPPh(2), MCl(2) (M = Mn, Fe), and CuI in high yield. Addition of excess CuI into 2 or directly to the reaction mixture led to the formation of a heterotrimetallic [Fe((i)PrNPPh(2))(3)Cu(2)((i)PrNPPh(2))] (3) in good yield. Complexes 1-3 have been characterized by means of elemental analysis, paramagnetic (1)H NMR, UV-vis spectroscopy, cyclic voltammetry, and single crystal X-ray analysis. In all three complexes, Mn or Fe are in the +2 oxidation state and have a high spin electron configuration, as evidenced by solution Evans' method. In addition, the oxidation state of Fe in complex 3 is confirmed by zero-field (57)Fe M?ssbauer spectroscopy. X-ray crystallography reveals that the three coordinate Mn/Fe centers in the zwitterionic complexes 1-3 adopt an unusual trigonal planar geometry.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号