首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The contact interaction problem for a thin circular rigid cover plate and an elastic half-space loaded at infinity by a tensile force directed in parallel to the boundary of the half-space is considered. It is assumed that the cover plate is not resistant to bending deformations. The problem can be reduced to an integral equation of the first kind whose kernel has a logarithmic singularity. The equation is solved approximately by the Multhopp-Kalandia method. The resulting approximate solution is compared with the previously obtained asymptotic solution.  相似文献   

2.
We consider an axisymmetric contact problem for a transversely isotropic layer on a rigid base. The problem is reduced to a Fredholm integro-differential equation of the first kind for the contact pressure under the punch. The integral equation is solved by the collocation method [1]. Some numerical results are presented.  相似文献   

3.
The idea, first used by the author for the case of crack problems, is applied here to solve a contact problem for a transversely isotropic elastic layer resting on a smooth elastic half-space, made of a different transversely isotropic material. A rigid punch of arbitrary shape is pressed against the layer’s free surface. The governing integral equation is derived; it is mathematically equivalent to that of an electrostatic problem of an infinite row of coaxial charged disks in the shape of the domain of contact. The case of circular domain of contact is considered in detail. As a comparison, the method of integral transforms is also used to solve the problem. The main difference of our integral transform approach with the existing ones is in separating of our half-space solution from the integral transform terms. It is shown that both methods lead to the same results, thus giving a new interpretation to the integral transform as a sum of an infinite series of generalized images.  相似文献   

4.
The paper is concerned with a contact problem about rigid rectangular punch forced into a half-space made of a linear elastic isotropic material with voids. We use a Cowin–Nunziato model for the half-space, and reduce the problem to a double Fredholm integral equation of the first kind. Then we apply two different approaches, to solve this equation. The first one is based on a direct collocation numerical technique. The second method is asymptotic, and we use a small parameter that is the relative width of the punch. Finally, compliance of the punch is determined, and results of the two different methods are compared with each other, as well as with a Sivashinsky–Panek–Kalker solution. Mathematics Subject Classifications (2000) 74M15.  相似文献   

5.
This paper considers a two-dimensional linear unsteady problem of rigid-stamp indentation on an elastic layer of finite thickness lying on the surface of a compressible fluid of infinite depth. The Lamé equations holds for the elastic layer, and the wave equation for the fluid velocity potential. Using the Laplace and Fourier transforms, the problem is reduced to determining the contact stresses under the stamp from the solution of an integral equation of the first kind, whose kernel has a logarithmic singularity. An asymptotic solution of the problem is constructed for large times of interaction. __________ Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, Vol. 49, No. 2, pp. 131–142, March–April, 2008.  相似文献   

6.
The problem in the plane theory of elasticity of an elastic layer bonded to an elastic half-space of the same material is considered. The formulation is achieved by means of integral transforms and the problem is reduced to the solution of a system of singular integral equations. A numerical solution is accomplished for the half-space and layer by use of the collocation scheme developed by Erdogan and Gupta.  相似文献   

7.
This investigation is concerned with a mathematical analysis of an elastic circular cylindrical pile embedded in a transversely isotropic half-space under lateral dynamic excitations. A combination of time-harmonic horizontal shear force and moment are applied at the top end of the pile. The boundary value problem is formulated by decomposing the pile-medium system into a fictitious pile and an extended transversely isotropic half-space. A Fredholm integral equation of the second kind governs the interaction problem, whose solution is then computed numerically. Selected results for dynamic compliance bending moment, displacement and slope profiles are presented for different transversely isotropic half-spaces to portray the influence of degree of anisotropy of the medium on various aspects of the solution.  相似文献   

8.
V. I. Fabrikant 《Meccanica》2011,46(6):1239-1263
The idea of generalized images, first used by the author for the case of crack problems, is applied here to solve a contact problem for n transversely isotropic elastic layers, with smooth interfaces, resting on a smooth elastic half-space, made of a different transversely isotropic material. A rigid punch of arbitrary shape is pressed against the top layer’s free surface. The governing integral equation is derived for the case of two layers; it is mathematically equivalent to that of an electrostatic problem of an infinite row of coaxial charged disks in the shape of the domain of contact. This result is then generalized for an arbitrary number of layers. As a comparison, the method of integral transforms is also used to solve the problem. The main difference of our integral transform approach with the existing ones is in separating of our half-space solution from the integral transform terms. It is shown that both methods lead to the same results, thus giving a new interpretation to the integral transform as a sum of an infinite series of generalized images.  相似文献   

9.
The paper deals with the contact behaviour of a slender die indenting an elastic half-space. It is shown that the problem of determining the pressure on the elastic half-space may be reduced (with an error exponentially small relative to the elongation) to a single-variable integral equation, whose solution is commonly represented by an asymptotic series in a small parameter. It was shown for a die of oval form that, depending on the type of contact region, either an increase or decrease in the force acting from the elastic half-space on the die upon approaching the end-points of the die are possible.  相似文献   

10.
We study a three-dimensional contact problem on the indentation of an elliptic punch into a face of a linearly elastic wedge. The wedge is characterized by two parameters of elasticity and its edge is subjected to the action of an additional concentrated force. The other face wedge is free from stresses. The problem is reduced to an integral equation for the contact pressure. An asymptotic solution of this equation is obtained which is effective for a given contact region fairly remote from the edge. Calculations are performed that allow one to evaluate the effect of a force applied outside the contact region on the contact pressure distribution. The problem under study is a generalization of L. A. Galin’s problem on a force applied outside a circular punch on an elastic half-space [1, 2]. In a special case of a wedge with an opening angle of 180° and zero contact ellipse eccentricity, the obtained asymptotic relation coincides with the expansion of Galin’s exact solution in a series. Problems of indentation of an elliptic punch into a spatial wedge with the face not loaded outside the contact region have been studied previously. For example, the paper [3] dealt with the case of a known contact region (asymptotic method) and the paper [4] considered the case of an unknown contact region (numerical method). The solution of Galin’s problem allowed the authors of [2] to reduce the contact problem on the interaction of several punches applied to a half-space to a system of Fredholm integral equations of the second kind (Andreikin-Panasyuk method). A topical direction in contact mechanics is the model of discrete contact as well as related problems on the interaction of several punches [2, 5–8]. The interaction of several punches applied to a face of a wedge can be treated in a similar manner and an asymptotic solution can be obtained for the case where a concentrated force is applied at an arbitrary point of this face beyond the contact region rather than on the edge.  相似文献   

11.
The 3D contact problem on the action of a punch elliptic in horizontal projection on a transversally isotropic elastic half-space is considered for the case in which the isotropy planes are perpendicular to the boundary of the half-space. The elliptic contact region is assumed to be given (the punch has sharp edges). The integral equation of the contact problem is obtained. The elastic rigidity of the half-space boundary characterized by the normal displacement under the action of a given lumped force significantly depends on the chosen direction on this boundary. In this connection, the following two cases of location of the ellipse of contact are considered: it can be elongated along the first or the second axis of Cartesian coordinate system on the body boundary. Exact solutions are obtained for a punch with base shaped as an elliptic paraboloid, and these solutions are used to carry out the computations for various versions of the five elastic constants. The structure of the exact solution is found for a punch with polynomial base, and a method for determining the solution is proposed.  相似文献   

12.
The three-dimensional contact problem on impression of a square punch into an elastic isotropic half-space is considered. An explicit formula for determining the normal stress on the contact area is obtained. International University of Civil Aviation, Kiev, Ukraine. Translated from Prikladnaya Mekhanika, Vol. 35, No. 10, pp. 21–26, October, 1999.  相似文献   

13.
The paper establishes the relationship between the static contact problems of elasticity and electroelasticity (in the absence of friction) for a transversely isotropic half-space whose surface is the isotropy plane. This makes it possible to avoid solving the electroelastic problem by finding all the characteristics of electroelastic contact from known cases of purely elastic interaction. Moreover, the electroelastic state of the half-space can be fully described using a known harmonic function, which is a solution of the purely elastic problem. The approach is exemplified by solving contact problems of electroelasticity for flat, elliptic, two circular, conical, and paraboloidal (circular and elliptic in plan) punches __________ Translated from Prikladnaya Mekhanika, Vol. 42, No. 11, pp. 69–84, November 2006.  相似文献   

14.
In this paper, we consider the axisymmetric problem of a frictionless receding contact between an elastic functionally graded layer and a homogeneous half-space, when the two bodies are pressed together. The graded layer is modeled as a nonhomogeneous medium with an isotropic stress–strain law and is subjected over a part of its top surface to normal tractions while the rest of it is free of tractions. Since the contact between the two bodies is assumed to be frictionless, then only compressive normal tractions can be transmitted in the contact area. Using Hankel transform, the axisymmetric elasticity equations are converted analytically into a singular integral equation in which the unknowns are the contact pressure and the receding contact radius. The global equilibrium condition of the layer is supplemented to solve the problem. The singular integral equation is solved numerically using orthogonal Chebychev polynomials and an iterative scheme is employed to obtain the correct receding contact length that satisfies the global equilibrium condition. The main objective of the paper is to study the effect of the material nonhomogeneity parameter and the thickness of the graded layer on the contact pressure and on the length of the receding contact.  相似文献   

15.
The dynamic behavior of a circular crack in an elastic composite consisting of two dissimilar half-spaces connected by a thin compliant interlayer is studied. One half-space contains a defect aligned perpendicular to the interlayer; the defect surfaces are loaded by normal harmonic forces, which ensures the symmetry of the stress-strain state. The thin interlayer is modeled by conditions of a nonideal contact of the half-spaces. The problem is reduced to a boundary integral equation with respect to the function of dynamic opening of the defect. The numerical solution of this equation yields frequency dependences of the mode I stress intensity factor in the vicinity of the crack for different values of interlayer thickness and relations between the moduli of elasticity of the composite components. __________ Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, Vol. 49, No. 3, pp. 197–207, May–June, 2008.  相似文献   

16.
We consider the axisymmetric contact problem on the indentation of a round punch with plane base into an elastic half-space. Roughness is taken into account in the framework of the well-known model in which the local surface displacements are proportional to some power of the contact pressures at the same point. To study the problem, we use the theory of nonlinear integral equations of Hammerstein type together with the mathematical technique of orthogonal Legendre polynomials and the contraction mapping principle. We obtain an approximate analytic solution of the problem, numerically analyze the results, and reveal typical laws of variation of the main mechanical variables.  相似文献   

17.
To study the process of impact of a rigid body on the surface of an elastic body made of a composite material, we consider a nonstationary dynamic contact problem about the impact of a plane rigid die on an elastic orthotropic half-plane. The problem is reduced to solving an integral equation of the first kind for the Laplace transform of the contact stresses under the die base. An approximate solution of the integral equation is constructed with the use of a special approximation to the symbol of the kernel of the integral equation in the complex plane. The inverse Laplace transform of the solution results in determining the scalar contact stress field on the die base, the force exerted by the die on the elastic medium, and the vertical displacement field of the free surface of the orthotropic medium out side the die. The solutions thus obtained permit studying specific features of the process of die penetration into an orthotropic medium and the strain properties of the medium.  相似文献   

18.
横观各向同性饱和地基上中厚圆板的非轴对称振动   总被引:1,自引:0,他引:1  
研究横观各向同性饱和土地基上中厚弹性圆板的非轴对称振动问题。基于横观各向同性饱和介质Biot波动方程的一般解,按混合边值问题建立了饱和地基与弹性中厚圆板非轴对称动力相互作用的对偶积分方程,并将对偶积分方程转化为易于计算的第二类Fredholm积分方程;采用数值方法求解该积分方程。数值算例结果表明,当h/a>0.05时,饱和半空间体上中厚度圆板在不同频率下的振动特性与相应频率下的刚性板的振动特性基本相同,当h/a<0.05时,板中心的位移将随h/a的减小而增大。  相似文献   

19.
The linearized theory of elasticity for prestressed bodies is used to solve a stationary plane problem for a prestressed two-layer half-space under a surface load moving with constant velocity. The half-space is assumed to be compressible and to have an arbitrary elastic potential. The Fourier transform is used to obtain the fundamental solution of the problem for different contact conditions and load velocities. A compressible material with a harmonic elastic potential is considered as an example __________ Translated from Prikladnaya Mekhanika, Vol. 44, No. 4, pp. 35–55, April 2008.  相似文献   

20.
An exact solution to the problem of indentation with friction of a rigid cylinder into an elastic half-space is presented. The corresponding boundary-value problem is formulated in planar bipolar coordinates, and reduced to a singular integral equation with respect to the unknown normal stress in the slip zones. An exact analytical solution of this equation is constructed using the Wiener-Hopf technique, which allowed for a detailed analysis of the contact stresses, strain, displacement, and relative slip zone sizes. Also, a simple analytical solution is furnished in the limiting case of full stick between the cylinder and half-space.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号