首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
We developed an isotopic dilution high-performance liquid chromatography (HPLC)/tandem mass spectrometer (MS/MS) method to rapidly and accurately quantify nine metabolites of several classes of pesticide in 1 mL human urine specimens. The analytes covered in the method are two organophosphate (OP) pesticide metabolites: 3,5,6-trichloro-2-pyridinol (TCPy), 2-isopropyl-6-methyl-4-pyrimidinol (IMPY); three synthetic pyrethroid metabolites: 3-phenoxy benzoic acid (3-PBA), 4-fluoro-3-phenoxybenzoic acid (4-F-3-PBA) and trans-3-(2,2-dichlorovinyl)-2,2-dimethyl-1(1-cyclopropane) carboxylic acid (t-DCCA); three herbicide metabolites: 2,4-dichlorophenoxyacetic acid (DCPAA), 2,4,5-trichlorophenoxyacetic acid (TCPAA) and atrazine mercapturate; and one insect repellent: N,N-diethyl-meta-toluamide (DEET). The analytes are first deconjugated by incubating with acetate/β-glucuronidase buffer at 37°C for 17 h. The deconjugated analytes are extracted and concentrated from the urine matrix using solid-phase extraction cartridges, separated through C18 reversed phase HPLC, and analysed on MS/MS. The MS/MS was operated in positive and negative electrospray ionisation switch mode. Two ions from each analyte and one from each labelled internal standard are monitored for quantification and confirmation. The limit of detections (LODs) for all the analytes are in the low parts-per-trillion (0.05 ng/mL) except TCPy where it was 0.5 ng/mL) with a wide linear range (0.05 up to 40 ng/mL) and provides high accuracy (recoveries: 90–118%) and high precision (coefficient of variation <15%). The method accuracy was also verified by the analysis of proficiency testing urine samples. We analysed 101 urine samples for a recent California study cohort, and detection frequencies ranged from ~100% to 0%: 3-PBA (98%), IMPY (91%), TCPy, (89%), DCPAA (66%), 4-F-3-PBA (11%), TCPAA (0%).  相似文献   

2.
Summary Applications of high-resolution gas chromatography and high-resolution mass spectrometry (GC-MS) for identification and quantitation of trace amounts of pyrethroid metabolites in human urine samples are demonstrated. The method covers the pyrethroid metabolitescis- andtrans-3-(2,2-dichlorovinyl)-2,2-dimethyl-cyclopropane carboxylic acid (cis- andtrans-DCCA),cis-3-(2,2-dibromovinyl)-2,2-dimethylcyclopropane carboxylic acid (cis-DBCA), 4-fluoro-3-phenoxybenzoic acid (FPBA), and 3-phenoxybenzoic acid (3-PBA). After acid-induced hydrolysis of urine samples and exhaustive solvent extraction, a carbodiimide-coupled esterification of the free carboxylic acids with hexafluoroisopropanol (HFIP) is applied. Identification of the derivatives formed is achieved by low-resolution electron-impact mass spectrometry (EIMS) using an ion-trap detector. Quantitation was by capillary gas chromatography—high-resolution mass spectrometry using negative chemical ionization (GC-NCIMS). 2-Phenoxybenzoic acid (2-PBA) served as internal standard. The limits of detection forcis- andtrans-DCCA,cis-DBCA, FPBA and 3-PBA were 0.03 μg L−1 or below. The applicability of the presented method was tested on urine samples of persons exposed to low levels of pyrethroids.  相似文献   

3.
Pyrethroid insecticides widely used in forestry, agricultural, industrial, and residential applications have potential for human exposure. Short sample preparation time and sensitive, economical high-throughput assays are needed for biomonitoring studies that analyze a large number of samples. An enzyme-linked immunosorbent assay (ELISA) was used for determining 3-phenoxybenzoic acid (3-PBA), a general urinary biomarker of exposure to some pyrethroid insecticides. A mixed-mode solid-phase extraction reduced interferences from acid hydrolyzed urine and gave 110 ± 6% recoveries from spiked samples. The method limit of quantification was 2 μg/L. Urine samples were collected from forestry workers that harvest pine cone seeds where pyrethroid insecticides were applied at ten different orchards. At least four samples for each worker were collected in a 1-week period. The 3-PBA in workers classified as high, low, or no exposure based on job analysis over all sampling days was 6.40 ± 9.60 (n = 200), 5.27 ± 5.39 (n = 52), and 3.56 ± 2.64 ng/mL (n = 34), respectively. Pair-wise comparison of the differences in least squares means of 3-PBA concentrations among groups only showed a significant difference between high and no exposure. Although this difference was not significant when 3-PBA excretion was normalized by creatinine excretion, the general trend was still apparent. No significant differences were observed among days or orchards. This ELISA method using a 96-well plate was performed as a high-throughput tool for analyzing around 300 urine samples measured in triplicate to provide data for workers exposure assessment.  相似文献   

4.
建立了一种应用高效液相色谱-串联质谱(HPLC-MS/MS)测定兔尿中与溴氰菊酯毒性相关的多种生物标志物的检测方法。分析物包括溴氰菊酯及其代谢产物1R,3R-二溴菊酸、3-苯氧基苯甲酸,以及5种生物标志物5-羟色胺、5-羟基吲哚乙酸、3-硝基丙酸、8-羟基脱氧鸟苷和6-甲氧基鸟嘌呤。样品经硅藻土基质固相分散萃取、三氯乙酸沉淀蛋白质和HLB固相萃取小柱净化,使用电喷雾离子源,在多反应监测模式下正负切换采集测定,其中溴氰菊酯、5-羟色胺、5-羟基吲哚乙酸、8-羟基脱氧鸟苷和6-甲氧基鸟嘌呤采用正离子模式,1R,3R-二溴菊酸、3-苯氧基苯甲酸和3-硝基丙酸采用负离子模式。基质校准曲线外标法定量。结果表明,7种生物标志物在各自的浓度范围内线性关系良好(R2不小于0.9914),5-羟基吲哚乙酸的检出限和定量限分别为20 μg/L和50 μg/L,其余化合物的检出限和定量限分别为0.2~5.0 μg/L和0.5~10 μg/L;在兔尿中3个不同添加水平的平均回收率为74.2%~98.7%,相对标准偏差(RSD)不大于12%,方法简单、快速、准确、灵敏,可作为溴氰菊酯暴露评估的检测方法。  相似文献   

5.
A fast and efficient method has been demonstrated for the trace determination of six important metabolites of synthetic pyrethroids including cis- and trans-3-(2,2-dichlorovinyl)-2,2-dimethylcyclopropane-1-carboxylic acid (cis- and trans-Cl2CA), cis-3-(2,2-dibromovinyl)-2,2-dimethylcyclopropane-1-carboxylic acid (cis-Br2CA), 4-fluoro-3-phenoxybenzoic acid (4-F-3-PBA), 3-phenoxybenzoic acid (3-PBA), and 2-phenoxybenzoic acid (2-PBA) in environmental water samples using hollow fiber (HF)-mediated liquid-phase microextraction (LPME) coupled with in-syringe derivatization (ISD) followed by gas chromatography (GC) with electron capture detector (ECD) analysis. This method utilizes a HF membrane segment impregnated with extraction solvent as the LPME sampling probe, which was connected to a microsyringe pre-filled with derivatizing agents, and it was immersed into sample solution for extraction. After extraction, the extracting solution was subjected to derivatization reaction that was performed inside the syringe barrel followed by GC-ECD analysis. Under optimal conditions, the best extraction efficiency was obtained using sampling probe (2.0 cm hollow fiber) impregnated with 1-octanol immersed into water sample (5.0 mL, adjusted pH below 1.0) and stirring (1,250 rpm) for 10 min at 70 °C and diisopropylcarbodiimide (2 μL) and 1,1,1,3,3,3-hexafluoro-2-propanol (1 μL) were the derivatizing agents used. The detection limits of 3 ng mL?1 for cis- and trans-Cl2CA, 2 ng mL?1 for cis-Br2CA, 6 ng mL?1 for 4-F-3-PBA, and 0.6 ng mL?1 for 3-PBA and 2-PBA. The method showed good linearity (R 2 = 0.973?0.998), repeatability from 4.0 to 13 % (n = 5), recovery from 79.2 to 95.7 %, and enrichment factors ranged between 109 and 159 for target analytes spiked in water samples. The proposed method and conventional methods were compared. Results suggested that the proposed HF-LPME-ISD/GC-ECD method was a rapid, simple, inexpensive, and eco-friendly technique for the analysis of metabolites of pyrethroids.  相似文献   

6.
Column-switching techniques for high-performance liquid chromatography of two acidic drugs, ibuprofen and mefenamic acid, in human serum with short-wavelength ultraviolet detection are described. The method involved extraction of the analyte from acidified serum followed by the chromatographic analysis using column switching. Three ODS columns were used each with different mobile phase, utilizing the difference of ion-pair formation or of ionization caused by pH change. The method offered high sensitivity and selectivity, with short-wavelength ultraviolet detection at 221 nm for ibuprofen and at 219 nm for mefenamic acid. The detection limits were 0.5 ng/ml (2.4 pmol/ml) for ibuprofen and 0.1 ng/ml (0.4 pmol/ml) for mefenamic acid using 1 ml of serum, both at a signal-to-noise ratio of 3. With some modifications, the principle of the method would be applicable to other acidic compounds in biological fluids.  相似文献   

7.
Chuang JC  Van Emon JM  Trejo RM  Durnford J 《Talanta》2011,83(5):658-1323
An enzyme-linked immunosorbent assay (ELISA) method was employed for determination of the pyrethroid biomarker, 3-phenoxybenzoic acid (3-PBA) in human urine samples. The optimized coating antigen concentration was 0.5 ng/mL with a dilution of 1:4000 for the 3-PBA antibody and 1:6000 for the enzyme conjugate. Urine samples were hydrolyzed with concentrated hydrochloric acid; extracted with dichloromethane and solvent-exchanged into a methanol/buffer solution, prior to analysis in a 96-microwell plate immunoassay. Quantitative recoveries of 3-PBA were obtained for fortified urine samples by ELISA (92 ± 18%) as well as by gas chromatography/mass spectrometry (GC/MS) (90 ± 13%). The overall method precision of these samples was within ±20% for both the ELISA and GC/MS methods. Analytical results from over one hundred urine samples showed that the ELISA and GC/MS data were highly correlated, with a correlation coefficient of 0.95. At the 10 ng/mL comparative concentration level, the false positive rate was 0% and the false negative rate was 0.8% for ELISA when using GC/MS as the reference method. The ELISA method has a suitable low detection limit for 3-PBA to assess pyrethroid exposures in non-occupational settings.  相似文献   

8.
A sensitive and selective high-performance liquid chromatographic assay for free and total ibuprofen and its major metabolites in human urine is described. Urine is acidified, drug and metabolites are extracted into hexane-propanol, back-extracted into sodium bicarbonate, neutralized and chromatographed. Ibufenac (4-isobutylphenylacetic acid) and 2-phenylpropionic acid were employed as internal standards. The extraction efficiencies were 94-100% for all compounds. The two metabolites and their internal standard were separated using an isocratic chromatographic system, followed by an abrupt step gradient to a second eluent for separation of ibuprofen and its internal standard with a total run time of 18 min. Detection was by a fixed-wavelength detector (214 nm). Sample-to-sample and day-to-day reproducibility studies yielded coefficients of variability of less than 9% for all compounds. The sensitivity was sufficient to determine 2.5 micrograms/ml free ibuprofen in 100 microliters urine.  相似文献   

9.
张续  韩林学  邱天  胡小键  朱英  杨艳伟 《色谱》2023,41(3):224-232
基于96孔固相萃取-超高效液相色谱-串联质谱法,建立了人尿中2种苯氧乙酸除草剂、2种有机磷农药代谢物和4种拟除虫菊酯农药代谢物的测定方法。通过对液相色谱条件、质谱条件和样品前处理过程的系统优化,实现了在16 min内对8种目标分析物的分析测定。具体方法:1 mL尿液经β-葡萄糖醛酸酶酶解过夜,Oasis HLB 96孔固相萃取进行目标分析物的提取净化,甲醇洗脱;以0.1%(体积分数)乙酸乙腈和0.1%(体积分数)乙酸水作为流动相,Acquity BEH C_(18)作为分析柱进行色谱分离;负离子电喷雾(ESI-)多反应监测(MRM)模式下检测目标化合物,同位素内标法定量。2,4-二氯苯氧乙酸(2,4-D)、2,4,5-三氯苯氧乙酸(2,4,5-T)2种苯氧乙酸除草剂和3-苯氧基苯甲酸(3-PBA)、4-氟-3-苯氧基苯甲酸(4F-3PBA)、反式二氯乙烯基二甲基环丙烷羧酸(trans-DCCA)3种拟除虫菊酯农药代谢物在0.1~100μg/L内、对硝基苯酚(PNP)、3,5,6-三氯-2-吡啶酚(TCPY)2种有机磷农药代谢物、顺式二氯乙烯基二甲基环丙烷羧酸(cis-DCCA)1种拟除虫菊酯代谢物在0.2~100μg/L内线性关系良好,相关系数均大于0.9993;方法检出限为0.02~0.07μg/L,方法定量限为0.08~0.2μg/L;低、中、高3个水平下的加标回收率为91.1%~110.5%,日内精密度为2.9%~7.8%,日间精密度为6.2%~10%。应用该方法测定了214份尿液样本。结果显示除2,4,5-T外,其余7种目标分析物均有检出。TCPY、PNP、3-PBA、4F-3PBA、trans-DCCA、cis-DCCA、2,4-D的检出率为2.8%~99.1%。检出浓度(中位值)由高到低分别是2.0μg/L(TCPY)、1.8μg/L(PNP)、0.99μg/L(trans-DCCA)、0.81μg/L(3-PBA)、0.44μg/L(cis-DCCA)、0.35μg/L(2,4-D)和未检出(4F-3PBA)。该方法操作简便,定量准确,灵敏度高,每批次可完成96个样品测定,适用于人尿中多种农药及农药代谢物的批量分析测定。  相似文献   

10.
Royal jelly, one of the most important bee products, can be contaminated with pesticide and/or antibiotic residues resulting from treatments applied either inside beehives or in the agricultural environment. A new multiresidue method was developed and validated for analysis of nine pesticides in royal jelly. Solid-phase extraction RP-C(18) cartridges were used for sample purification and isolation of analytes. Final solution was analyzed with GC and micro-electron-capture detection. Four synthetic acaricides used by beekeepers (bromopropylate, coumaphos, malathion and tau-fluvalinate), and moreover one pyrethroid, two organochlorine, and two organophosphate insecticides were tested. Linearity is demonstrated for the range of 0.0025-1mgkg(-1), with correlation coefficients ranging from 0.99991 to 0.99846, depending on the analyte. Overall recovery rates from royal jelly blank samples spiked at five fortification levels ranged from 80.8% (lindane) to 91.3% (ethion), well above the range defined by the SANCO/10232/2006 and EC/675/2002 documents. The limit of quantification was <0.003-0.005 mg kg(-1) depending on the analyte, and the reporting level of the method, defined as the lowest recovery level, was 0.005 mg kg(-1).  相似文献   

11.
Selective, accurate, and reproducible liquid chromatography/tandem mass spectrometry (LC/MS/MS) methods were developed and validated for the determination of mevalonic acid, an intermediate in the biosynthesis of cholesterol and therefore a useful biomarker in the development of cholesterol lowering drugs, in human plasma and urine. A hepta-deuterated analog of mevalonic acid was used as the internal standard. For both methods, calibration standards were prepared in water, instead of human plasma and urine, due to unacceptably high levels of endogenous mevalonic acid. The lower quality control (QC) samples were prepared in water while the higher QC samples were prepared in the biological matrices. For the isolation/purification of mevalonic acid from the plasma and urine matrices, the samples were first acidified to convert the acid analyte into its lactone form. For the plasma samples, the lactone analyte was retained on and then eluted off a polymeric solid-phase extraction (SPE) sorbent. For the urine method, the sample containing the lactone analyte was passed through a C-18 SPE column, which did not retain the analyte, with the subsequent analyte retention on and then elution off a polymeric SPE sorbent. Chromatographic separation was achieved isocratically on a polar-endcapped C-18 analytical column with a water/methanol mobile phase containing 0.5 mM formic acid. Detection was by negative-ion electrospray tandem mass spectrometry. The standard curve range was 0.500-20.0 ng/mL for the plasma method and 25.0-1,000 ng/mL for the urine method. Excellent accuracy and precision were obtained for both methods at all concentration levels tested. It was interesting to note that for certain batches of urine, when a larger sample volume was used for analysis, a high degree of matrix effect was observed which resulted not only in the attenuation of the absolute response, but also in a change of analyte/internal standard response ratio. This demonstrated that, under certain conditions, the use of a stable isotope analog internal standard does not, contrary to conventional thinking, guarantee the constancy of the analyte/internal response ratio, which is a prerequisite for a rugged bioanalytical method. On the other hand, under conditions where the sample matrix does not have such a deleterious effect, we have found that a stable isotope analog could serve as a surrogate (substitute) analyte. Thus, we have shown that using calibration standards prepared by spiking plasma with tri-deuterated or tetra-deuterated mevalonic acid, instead of mevalonic acid itself (the analyte), plasma QC samples that contain mevalonic acid can be successfully analyzed for the accurate and precise quantitation of mevalonic acid. The use of a surrogate analyte provides the opportunity to gauge the daily performance of the method for the low concentration levels prepared in the biological matrix, which otherwise is not achievable because of the endogenous concentrations of the analyte in the biological matrices.  相似文献   

12.
Metabolites of synthetic pyrethroids such as cis-3-(2,2-dibromovinyl)-2,2-di-methylcyclo-propane-1-carboxylic acid, cis- and trans-3-(2,2-dichlorovinyl)-2,2-dimethylcyclopropane-1-carboxylic acid), 3-phenoxybenzoic acid (3-PBA), and 4-fluoro-3-PBA are biomarkers for exposure to phenothrin, tetramethrin, cyfluthrin, cypermethrin, deltamethrin, and permethrin. In this study, the pyrethroid metabolites in workers’ urine samples were monitored for the first time with a novel sample pretreatment process combining hollow fiber liquid phase microextraction (HF-LPME) and in-syringe derivatization (ISD) followed by gas chromatography–electron capture detector (GC-ECD) analysis. A micro-syringe pre-filled with derivatizing agents and syringe needle connected to an extracting solvent impregnated hollow fiber segment was used as the LPME probe. Pyrethroid metabolites were extracted and enriched simultaneously from urine samples by HF-LPME sampling and acid hydrolysis at 70 °C for 10 min. After sampling, the ISD was performed by mixing the extracting solution and derivatizing agents through plunger movements, followed by GC-ECD analysis. Parameters influencing the HF-LPME efficiency and ISD were investigated and optimized. Under optimum conditions, the method provided enrichment factors of 69.8–154.6, repeatability from 5.0 to 12% (n = 5), and good linearity (R 2 = 0.9980–0.9998) for interested analytes spiked in urine samples. The method detection limits ranged from 1.6 to 17 ng/mL. A comparison was performed between the proposed method and conventional methods. The proposed method was applied to analyze pyrethroid metabolites in the urine samples collected from workers of pesticide formulation plants. The results suggested that the proposed HF-LPME coupled ISD method was a rapid, simple, efficient, and eco-friendly technique in the biomonitoring of metabolites of pyrethroids in workers’ urine.  相似文献   

13.
In situ chiral derivatization was used to obtain diastereomeric amides of ibuprofen for their subsequent extraction with supercritical carbon dioxide. For this purpose, ibuprofen [racemic 2-(4-isobutylphenyl)propionic acids] was previously extracted on a C-18 SPE device and quantitatively transferred into the supercritical fluid extraction (SFE) vessel for derivatization and extraction with (R)-1-(naphthen-1-yl)ethylamine as chiral derivatizing base, and a mixture of 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide and 1-hydroxybenzotriazole as reagents, in order to obtain and extract the corresponding diastereoisomeric amides, which were subsequently determined by liquid chromatography. The influence of different extraction and derivatization variables (pressure, temperature, extraction time in the static and dynamic extraction modes, and amount of chiral base) on the extraction efficiency was studied. Spiked and native urine samples containing ibuprofen were used to demonstrate the application of this method. The absolute recovery, selectivity, precision and accuracy of the combined solid-phase extraction (SPE)/SFE approach were compared to those provided by conventional liquid–liquid extraction. The results indicated that SFE seems to be an effective choice for in situ derivatization since analysis times and solvent consumption were dramatically reduced.  相似文献   

14.
Pressurized hot liquid water and steam were used to investigate the possibilities of extracting insecticides (carbofuran, carbosulfan, and imidacloprid) from contaminated process dust remaining from seed-pellet production. Extraction temperature was the most important parameter in influencing the extraction efficiency and rate of extraction, while varying the pressure had no profound effect. A clean-up procedure of the water extracts using solid phase extraction (SPE) was found to be necessary prior to final analysis by high-performance liquid chromatography (HPLC). Quantitative extraction (compared to a validated organic solvent extraction method) of imidacloprid was obtained at temperatures of 100-150 degrees C within 30 min extraction time. Temperatures above 150 degrees C were required to extract carbofuran efficiently. The most non-polar analyte of the investigated compounds, carbosulfan, gave no detectable concentrations with pressurized hot water extraction (PHWE). One reason might be its low solubility in water, and when attempts are made to increase its solubility by increasing the temperature it may degrade to carbofuran. This can explain recovery values above 100% for carbofuran at higher temperatures. A comparison of the PHWE results and those obtained with supercritical fluid extraction (SFE) revealed that PHWE is advantageous for polar compounds, where the solubility of the analyte in water is high enough that lower temperatures can be used. For non-polar compounds carbon dioxide based extraction is preferred unless the target analyte is highly thermostable.  相似文献   

15.
(E)-5-(2-Bromovinyl)-2'-deoxyuridine is an antiviral drug that is experimentally used for modulation of the antitumour effect of fluoropyrimidines, such as ftorafur and 5-fluorouracil. The isolation of the analyte, in the presence of 5-fluorouracil, from the matrix is performed either by means of a simple protein precipitation (plasma) or by means of a liquid-liquid extraction with ethyl acetate (urine). Following pretreatment, the analyte is analysed by reversed-phase chromatography and quantified by absorbance detection at 307 nm. The minimum detectable concentration in plasma and urine samples is ca. 6 ng/ml. The recovery after deproteination of plasma samples is 75%, while after liquid-liquid extraction of urine the recovery amounts 92%. The degree of protein binding of the analyte, measured by ultrafiltration, is found to be 97%. These data allow the bioanalysis of (E)-5-(2-bromovinyl)-2'-deoxyuridine for pharmacokinetic studies.  相似文献   

16.
A method is described for the extraction of a phosphonic acid angiotensin-converting enzyme inhibitor from either urine or plasma, and subsequent quantitation using high-performance liquid chromatographic (HPLC) analysis and post-column o-phthalaldehyde reagent derivatization. The compound cannot be quantitatively extracted from the body fluids, but use of a fluorinated internal standard allowed for the computation of accurate results. With the use of an internal standard, excellent precision, linearity, and recovery were obtained for analyte response in both urine and plasma. In urine a working range of 0.2-10 micrograms/ml was found, with a limit of detection of 0.1 micrograms/ml. For plasma the working range was found to be 2-500 ng/ml, and the limit of detection was established as 1 ng/ml. Due to the non-polar character of the analyte at low pH values, it was possible to use novel extraction (solid-phase C8 column) and HPLC [poly(styrenedivinyl benzene) HPLC column] conditions to separate and quantitate the compound from plasma and urine.  相似文献   

17.
This paper describes an extraction method using a polypropylene membrane supporting dihexyl ether (three-phase hollow fiber-based liquid phase microextraction (HF-LPME)) for the analysis of several pharmaceuticals (salicylic acid (SAC), ibuprofen (IBU) and diclofenac (DIC)) followed by a HPLC determination using a monolithic silica type HPLC column, that allows lower retention times than the usual packed columns with adequate resolution. Detection was realized by means of a coupled in series diode array (DAD) and fluorescence (FLD) detectors. HF-LPME is a relatively new technique employed in analytical chemistry for sample pretreatment which offers more selectivity and sensitivity than any traditional extraction technique. Detection limits by DAD are 12, 53 and 40 ng mL−1 for salicylic acid, diclofenac and ibuprofen, respectively and by FLD 7 and 2 ng mL−1 for salicylic acid, and ibuprofen. The method has been successfully applied to their direct determination in human urine and the results obtained demonstrated that could be also applied to the determination of the corresponding metabolites.  相似文献   

18.
An experimental design optimization is reported of an analytical procedure used in the simultaneous determination of seven non-steroidal anti-inflammatory drugs (NSAIDs) in bovine milk by gas chromatography with mass spectrometry detection (GC-MS). This analytical procedure involves a solid-phase microextraction (SPME) step and an aqueous derivatization procedure of the NSAIDs to ethyl esters in bovine milk. The following NSAIDs are studied: ibuprofen (IBP), naproxen (NPX), ketoprofen (KPF), diclofenac (DCF), flufenamic acid (FLF), tolfenamic acid (TLF) and meclofenamic acid (MCL). Three kinds of SPME fibers - polyacrylate (PA), polydimethylsiloxane/divinylbenzene (PDMS/DVB) and polydimethylsiloxane (PDMS) - are compared to identify the most suitable one for the extraction process, on the basis of two steps: to determine the equilibrium time of each fiber and to select the fiber that provides the best figures-of-merit values calculated with three-way PARAFAC-based calibration models at the equilibrium time. The best results were obtained with the PDMS fiber. Subsequently, 8 experimental factors (related to the derivatization reaction and the SPME) were optimized by means of a D-optimal design that involves only 14 rather than 512 experiments in the complete factorial design. The responses used in the design are the sample mode loadings of the PARAFAC decomposition which are related to the quantity of each NSAID that is extracted in the experiment. Owing to the fact that each analyte is unequivocally identified in the PARAFAC decomposition, a calibration model is not needed for each experimental condition. The procedure fulfils the performance requirements for a confirmatory method established in European Commission Decision 2002/657/EC.  相似文献   

19.
A simple separation procedure for noble metals based on cloud point extraction is proposed. The analyte ions in aqueous acidic solution, obtained by the acid digestion of the samples, were complexed with O,O-diethyl-dithiophosphate and Triton X-114 was added as a non-ionic surfactant. By increasing the temperature up to the cloud point, a phase separation occurs, resulting in an aqueous phase and a surfactant-rich phase containing most of the analytes that were complexed. The metals in the surfactant-rich phase were determined by electrothermal vaporization inductively coupled plasma mass spectrometry. The extraction conditions as well as the instrumental parameters were optimized. Enrichment factors ranging from 7 (Rh) to 60 (Pt) and limits of detection from 0.6 (Pt) to 3.0 ng l−1 (Rh) were obtained in the digested samples. The extraction was not efficient for Ir. Among the reference materials analyzed in this work, only one (SRM 2670, urine) presented recommended values for Au and Pt. Due to the non-availability of adequate CRMs, accuracy was assessed by spiking known analyte amounts to the acid digests. Recoveries close to 100% were observed for all the studied elements but Ru. Poor agreement between found and recommended values was observed for non-digested urine sample, probably due to the carrier effect of co-extracted residual matrix components. However, good agreement was reached after urine acid mineralization.  相似文献   

20.
A direct and stereospecific capillary zone electrophoresis (CZE) method for quantification ibuprofen enantiomers in biological matrices: human serum and urine, has been developed. Chiral separation of the enantiomers of ibuprofen and (+)-S-indobufen [(+)-S-INDB, internal standard, IS] was obtained in an uncoated silica capillary filled with a background electrolyte (BGE), consisted of heptakis 2,3,6-tri-O-methyl-β-cyclodextrin (TM-β-CD) in buffer of pH 5.0. The complete enantioselective analysis of ibuprofen and its 1-hydroxy metabolite confirmed appropriate specificity of the method. The electrophoretic parameters: electroosmotic (μEOF) and electrophoretic (μep) mobility and resolution factor (Rs) were determined. Extraction procedures with organic solvent and solid phase extraction (SPE) with C18 stationary phase for isolation of enantiomers from biological fluids were compared. SPE method for further studies was chosen. Stereoselective extraction of IBP enantiomers from serum at basic pH has been discovered. Validation of the method was carried out. Calibration curves of ibuprofen enantiomers were linear in the range of 0.1-25.0 μg/ml in serum and of 0.5-250.0 μg/ml in urine. Recovery of both enantiomers from serum and urine amounted 74-86 and 90-98%, respectively. Intra- and inter-day measurement precision and accuracy were below 15%. Limits of detection for IBP enantiomers amounted 0.05 and 0.25 μg/ml in samples of serum and urine, respectively. Limit of quantitation was also estimated. IBP enantiomers proved to be stable following three freeze and thaw cycles and during storage in autosampler at ambient temperature. The validated methods enable pharmacokinetic studies of enantiomers in both media. The elaborated HPCE method can be alternative to HPLC.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号