首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
A quasielastic neutron-scattering experiment carried out on a backscattering spectrometer with sub-micro eV resolution in the temperature range of 200-250 K has revealed the dynamics of surface water in cerium oxide on the time scale of hundreds of picoseconds. This slow dynamics is attributed to the translational mobility of the water molecules in contact with the surface hydroxyl groups. The relaxation function of this slow motion can be described by a slightly stretched exponential with the stretch factor exceeding 0.9, which indicates almost a Debye-type dynamics. Down to about 220 K, the temperature dependence of the residence time for water molecules follows a Vogel-Fulcher-Tamman law with the glass transition temperature of 181 K. At lower temperatures, the residence time behavior abruptly changes, indicating a fragile-to-strong liquid transition in surface water at about 215 K.  相似文献   

2.
It is shown that many simple glass-forming liquids exhibit a phenomenon known in the area of polymer science as the liquid–liquid transition. The phenomenon manifests itself as a third-order transition in the equilibrium liquid-specific heat data around approximately 1.2 Tg and also as a bifurcation of the liquid relaxation into primary and secondry processes. It is stressed that the above phenomenon is due to a smooth changeover of the liquid from one dynamic regime to the other and hence is not due to any real phase transition. It is suggested that a liquid cluster kind of picture for the supercooled liquid regime, is capable of explaining the above phenomenon and is consistent with observation made on polymers and monomeric liquids. © 1993 John Wiley & Sons, Inc.  相似文献   

3.
We experimentally studied the nematic-isotropic phase transition of (a) binary mixtures consisting of nematic and racemic liquid crystals and (b) binary mixtures consisting of positive and negative dielectric liquid crystals. We observed that the phase transition temperature is very sensitive to the chemical structures of the constituent components. We also used Maier-Saupe theory to calculate the transition temperature of binary mixtures. By fitting the experimental data, we obtained the interaction coupling constant between the constituent components.  相似文献   

4.
Quadrupolar spin-lattice relaxation effect was used to study the temperature dependence of the correlation of electric field gradient (EFG) observed by (63)Cu and (65)Cu NMR in the liquid and supercooled liquid states of Pd(43)Cu(27)Ni(10)P(20) metallic glass forming system. The correlation time of EFG was shown to have a dramatic temperature dependence that cannot be accounted for by available theory. Analyzed in the context of mode coupling theory (MCT), it is shown that the correlation time of EFG follows the scaling equation of MCT and reveals a T(c), the critical temperature of MCT, at 700 K. Other NMR techniques such as chemical exchange line narrowing and stimulated echo pulse sequences were used to study motion of (31)P at lower temperatures. Combined together, these techniques cover the whole range of liquid to solid transition. By comparing the NMR results with data obtained by other techniques, a decoupling of motion for different types of atoms is revealed starting from T(c) and below. This essentially demonstrates a transition from liquidlike to solidlike motion at T(c) as predicted by MCT.  相似文献   

5.
Broadband dielectric spectroscopy data on water confined in three different environments, namely at the surface of a globular protein or inside the small pores of two silica substrates, in the temperature range 140 K ≤ T ≤ 300 K, are presented and discussed in comparison with previous results from different techniques. It is found that all samples show a fast relaxation process, independently of the hydration level and confinement size. This relaxation is well known in the literature and its cross-over from Arrhenius to non-Arrhenius temperature behavior is the object of vivid debate, given its claimed relation to the existence of a second critical point of water. We find such a cross-over at a temperature of ~180 K, and assign the relaxation process to the layer of molecules adjacent and strongly interacting with the substrate surface. This is the water layer known to have the highest density and slowest translational dynamics compared to the average: its apparent cross-over may be due to the freezing of some degree of freedom and survival of very localized motions alone, to the onset of finite size effects, or to the presence of a calorimetric glass transition of the hydration shell at ~170 K. Another relaxation process is visible in water confined in the silica matrices: this is slower than the previous one and has distinct temperature behaviors, depending on the size of the confining volume and consequent ice nucleation.  相似文献   

6.
The radiation-induced polymerization of binary systems consisting of glass-forming monomer and glass-forming solvent in supercooled phase was studied. The initial polymerization rates were markedly affected by Tg (glass transition temperature) and Tv of the system (30–50°C higher than Tg), which turned to be functions of the composition. The composition and temperature dependence of initial polymerization rate in binary glass-forming systems were much affected by homogeneity of the polymerization system and the Tg of the glass-forming solvent. The composition and temperature dependences in the glycidyl methacrylate–triacetin system as a typical homogeneous polymerization system were studied in detail, and the polymerizations of hydroxyethyl methacrylate–triacetin and hydroxyethyl methacrylate–isoamyl acetate systems were studied for the heterogeneous polymerization systems; the former illustrates the combination of lower Tg monomer and higher Tg solvent and the latter typifies a system consisting of higher Tg monomer and lower Tg solvent. All experimental results for the composition and temperature dependence of initial polymerization rate in binary glass-forming systems could be explained by considering the product of the effect of the physical effect relating to Tv and Tg of the system and the effect of composition in normal solution polymerization at higher temperature, which was also the product of a dilution effect and a chemical or physical acceleration effect.  相似文献   

7.
《Chemical physics letters》1985,113(3):299-302
Saturation studies of nitroxides in glass-forming dibutyl phthalate were performed to verify that increased spin—lattice relaxation time (T1) is responsible for intensity reduction as temperature is lowered. Correspondence between onsets of saturation and intensity decrease, matches to T1 versus temperature and between the observed and calculated intensities all verify the assertion.  相似文献   

8.
By means of a nuclear magnetic resonance experiment, we give evidence of the existence of a fragile-to-strong dynamic crossover transition (FST) in confined water at a temperature T(L)=223+/-2 K. We have studied the dynamics of water contained in 1D cylindrical nanoporous matrices (MCM-41-S) in the temperature range 190-280 K, where experiments on bulk water were so far hampered by crystallization. The FST is clearly inferred from the T dependence of the inverse of the self-diffusion coefficient of water (1D) as a crossover point from a non-Arrhenius to an Arrhenius behavior. The combination of the measured self-diffusion coefficient D and the average translational relaxation time tau(T), as measured by neutron scattering, shows the predicted breakdown of Stokes-Einstein relation in deeply supercooled water.  相似文献   

9.
10.
Extensive data on the viscosity, covering 15 orders of magnitude, and crystal growth rate, covering seven orders of magnitude, of liquid diopside (CaO.MgO.2SiO(2)) were collected in a wide range of undercoolings from 1.10T(g) to 0.99T(m) (T(g) is the glass transition temperature and T(m) the melting point). The raw growth rate data were corrected for the increased interfacial temperature produced by the heat released during crystallization. A detailed analysis confirms that growth mediated by screw dislocations reasonably explain the experimental data in these wide ranges of temperatures and growth rates. Effective diffusion coefficients were calculated from crystal growth rates and from viscosity, and were then compared with measured self-diffusion coefficients of silicon and oxygen in diopside melt. The results show that oxygen and silicon control the diffusion dynamics involved in crystal growth and viscous flow. This study not only unveils the transport mechanism in this complex liquid, but also validates the use of viscosity (through the Stokes-Einstein or the Eyring equations) to account for the kinetic term of the crystal growth expression in a wide range of temperatures.  相似文献   

11.
12.
《Liquid crystals》2000,27(9):1239-1248
The formerly implemented molecular design concept behind glass-forming liquid crystals (gLCs) was generalized by increasing the volume of the non-mesogenic central core, with an attendant increase in the number of nematic pendants, using 5-hydroxyisophthalic acid as the bridging unit. New nematic gLCs were synthesized and characterized, showing an elevation in Tg by 30 to 40°C with no definite trend in Tc over the benzene, cis, cis-cyclohexane, and exo, endo-bicyclo[2.2.2]oct-7-ene base cores. The exo, exo-configured gLC showed a higher Tg and a higher T c than the exo, endo-counterpart. Morphological characterization with X-ray diffractometry revealed the non-crystalline nature of pristine samples and the morphological stability of thermally processed gLC films against recrystallization for six months. Nematic gLC films were prepared for characterization by FTIR linear dichroism, resulting in an orientational order parameter in the range 0.52 to 0.63. A chiral-nematic gLC derived from exo, exo-bicyclo[2.2.2.]oct-7-ene also showed an elevation in Tg by 10 to 20°C over the cyclohexane-based systems reported previously. With (S)-(-)-1-phenylethylamine as the chiral moiety, the left-handed, chiral-nematic gLC film yielded a selective reflection band centred around 375 nm. Tunability of selective reflection from the UV to visible region was demonstrated by mixing the chiral-nematic and nematic gLCs at varying ratios.  相似文献   

13.
The formerly implemented molecular design concept behind glass-forming liquid crystals (gLCs) was generalized by increasing the volume of the non-mesogenic central core, with an attendant increase in the number of nematic pendants, using 5-hydroxyisophthalic acid as the bridging unit. New nematic gLCs were synthesized and characterized, showing an elevation in Tg by 30 to 40°C with no definite trend in Tc over the benzene, cis, cis-cyclohexane, and exo, endo-bicyclo[2.2.2]oct-7-ene base cores. The exo, exo-configured gLC showed a higher Tg and a higher T c than the exo, endo-counterpart. Morphological characterization with X-ray diffractometry revealed the non-crystalline nature of pristine samples and the morphological stability of thermally processed gLC films against recrystallization for six months. Nematic gLC films were prepared for characterization by FTIR linear dichroism, resulting in an orientational order parameter in the range 0.52 to 0.63. A chiral-nematic gLC derived from exo, exo-bicyclo[2.2.2.]oct-7-ene also showed an elevation in Tg by 10 to 20°C over the cyclohexane-based systems reported previously. With (S)-(-)-1-phenylethylamine as the chiral moiety, the left-handed, chiral-nematic gLC film yielded a selective reflection band centred around 375 nm. Tunability of selective reflection from the UV to visible region was demonstrated by mixing the chiral-nematic and nematic gLCs at varying ratios.  相似文献   

14.
Features of glass transition in liquid crystalline nematic and smectic E, B and IA phases of selected materials observed by means of the polarising microscopy and Fourier transform infrared spectroscopy (FTIR) are reported. Evolution of cracking in the glass and a coincidence of its disappearance temperature with the glass transition temperature (Tg) on heating is shown and discussed in the context of processes that occur in the glass. The shape of temperature dependencies of absorption bands is shown as the signature of the glass transition.  相似文献   

15.
An apparatus was designed to measure the evaporation rates of the components comprising a binary liquid mixture, from a horizontal surface, under condi Evaporation studies were conducted on the ethanol-water system. The effects on the evaporation rate of air velocity and liquid composition were investiThe experimental evaporation rates were shown to depend on vapour pressure driving force. For the pure component, the evaporation exhibited a direct li For ethanol-water mixtures the total and ethanol component evaporation increased with increasing ethanol concentration, while that of the water compone  相似文献   

16.
Steady-state and time-resolved emission techniques were employed to study the nonradiative process of Thioflavin-T (ThT) in 1-propanol as a function of temperature. We found that the nonradiative rate, k(nr), decreased by about 3 orders of magnitude when the temperature was lowered to 88 K. We found remarkably good correspondence between the temperature dependence of k(nr) of ThT and the dielectric relaxation times of the 1-propanol solvent.  相似文献   

17.
The first-order transition from the isotropic (I) to smectic-A (Sm?A) phase in the liquid crystal 4-cyano-4(')-decylbiphenyl (10CB) doped with the polar solvent acetone (ace) has been studied as a function of solvent concentration by high-resolution ac-calorimetry. Heating and cooling scans were performed for miscible 10CB+ace samples having acetone mole fractions from x(ace)=0.05 (1 wt?%) to 0.36 (10%) over a wide temperature range from 310 to 327 K. Two distinct first-order phase transition features are observed in the mixture whereas there is only one transition (I-Sm?A) in the pure 10CB for that particular temperature range. Both calorimetric features reproduce on repeated heating and cooling scans and evolve with increasing x(ace) with the high-temperature feature relatively stable in temperature but reduced in size while the low-temperature feature shifts dramatically to lower temperature and exhibits increased dispersion. The coexistence region increases for the low-temperature feature but remains fairly constant for the high-temperature feature as a function of x(ace). Polarizing optical microscopy supports the identification of a smectic phase below the high-temperature heat capacity signature indicating that the low-temperature feature represents an injected smectic-smectic phase transition. These effects may be the consequence of screening the intermolecular potential of the liquid crystals by the solvent that stabilizes a weak smectic phase intermediate of the isotropic and pure smectic-A.  相似文献   

18.
19.
Dynamic structure factors for Na(c)K(1-c) liquid metallic alloys and pure components are studied by molecular dynamics simulations. Large values of Landau-Placzek ratio for four compositions of the liquid alloy are analyzed by wave-number dependent contributions from relaxation and propagating processes within the generalized collective modes method. The origin of the large Landau-Placzek ratio for liquid alloys is discussed.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号