首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Resonant ultrasound spectroscopy (RUS) is a method whereby the elastic tensor of a sample is extracted from a set of measured resonance frequencies. RUS has been used successfully to determine the elastic properties of single crystals and homogeneous samples. In this paper, we study the application of RUS to macroscopic samples of mesoscopically inhomogeneous materials, specifically rock. Particular attention is paid to five issues: the scale of mesoscopic inhomogeneity, imprecision in the figure of the sample, the effects of low Q, optimizing the data sets to extract the elastic tensor reliably, and sensitivity to anisotropy. Using modeling and empirical testing, we find that many of the difficulties associated with using RUS on mesoscopically inhomogeneous materials can be mitigated through the judicious choice of sample size and sample aspect ratio.  相似文献   

2.
Recent experimental and theoretical improvements of resonant ultrasound spectroscopy (RUS) are summarized to investigate elastic constants of phases in shape memory alloys. The proposed inversion procedure, described in this work, is particularly suitable to reliable evaluation of the temperature dependence of elastic constants of low-symmetry ferroelastic materials which may be strongly elastically anisotropic and tend to exist in twinned forms. The method is applicable even for the evaluation of single-crystal elastic constants from RUS measurements on microtwinned crystals, since it involves a homogenization algorithm based on the macroscopic deformation response of the layered structure. This potentially allows performing meaningful acoustic studies on samples with a general submicron-size layered structure.  相似文献   

3.
Resonant ultrasound spectroscopy (RUS) can nondestructively obtain the elastic constants of compact specimens, however many materials have hollow cross-sections and frequency analysis of such geometries is required before inclusion in the RUS methodology. Resonant mode shapes of tubes with length equal to diameter and varying ratios of tube inner to outer diameter (Λ) as well as Poisson's ratio (ν) were identified by eigenvalue analysis using a commercial finite element code. Longitudinal and shear RUS experiments were conducted on tubes with Λ varying between 0 and 0.95 and compared to the numerical results. Simulations predict that the fundamental mode transitions from pure torsion to symmetric or antisymmetric ring bending at Λ = 0.3. The frequency of the first torsion mode is invariant to Λ and unequivocal identification of this mode is obscured by overlap of bending harmonics as Λ approaches 0.95. In the context of rapid calculation of isotropic elastic constants, shear moduli were calculated from the first torsional mode and Poisson's ratio was inferred from the Demarest maps of the mode structure's dependence upon Poisson's ratio. An average shear modulus of 27.5 + 1.5 ∕ -0.6 GPa, about 5% larger than literature values for 6061 aluminum, and ν of 0.33 were inferred. Errors are attributed to tube aspect ratios slightly greater than 1 and weak material anisotropy. Existing analytical solutions for ring bending modes derived from shell approximations and for infinitely long tubes under plane strain assumptions do not adequately describe the fundamental modes for short tubes. The shear modulus can be calculated for all Λ using the existing analytical solution.  相似文献   

4.
Kaplan G  Darling TW  McCall KR 《Ultrasonics》2009,49(1):139-8235
Resonant ultrasound spectroscopy (RUS) is capable of determining the bulk elastic properties of a solid from its characteristic vibration frequencies, given the dimensions, density and shape of the sample. The model used for extracting values of the elastic constants assumes perfect homogeneity, which can be approximated by average-isotropic polycrystals. This approximation is excellent in the small grain regime assumed for most averaging procedures, but for real samples with indeterminate grain size distributions, it is not clear where the approximation breaks down. RUS measurements were made on pure copper samples where the grain size distribution was changed by progressive heat treatments in order to find a quantitative limit for the loss of homogeneity. It is found that when a measure of the largest grains is 15% of the sample’s smallest dimension, the deviation in RUS fits indicates elastic inhomogeneity.  相似文献   

5.
Resonant ultrasound spectroscopy (RUS) was used to investigate the changes of elastic properties induced by magnetic field in magnetic shape memory alloys Ni-Mn-Ga and Co-Ni-Al. In contrast to large magneto-elastic response of Ni2MnGa austenite, there is only very weak response of Co-Ni-Al. This indicates that the austenite phase of Ni-Mn-Ga can have a privileged position and this may be a reason for the existence of magnetic shape memory effect. In contrast to austenite, the magneto-elastic response in Ni-Mn-Ga martensite is very small with large damping due to existence of twin boundaries. The measurement showed that RUS can be a powerful method to probe magneto-elastic properties of shape memory alloys.  相似文献   

6.
Modulus–porosity relationships are critical for engineered bone tissue scaffold materials such as hydroxyapatite (HA), where porosity is essential to biological function. Resonant ultrasound spectroscopy (RUS) measurements revealed that the Young's modulus, E, and shear modulus, G, of both alumina and HA decrease monotonically with increasing volume fraction porosity, P, for 0.06 < P < 0.39 (alumina) and 0.05 < P < 0.51 (HA). Although the elastic moduli of porous materials have been measured by a number of different ultrasonic resonance techniques (of which the RUS technique is one example) and over the last decade the elastic moduli of many solids have been measured by the RUS technique, this study is the first systematic RUS study of porous materials. Comparison of E versus P data for alumina (which has been studied extensively) with literature data from several measurement techniques indicates the RUS technique is effective for modulus–porosity measurements. Another key result is that although the HA specimens included in this study have a unimodal pore size distribution, the details of the decrease in E and G with increasing P agree well with literature data for HA with both unimodal and bimodal pore size distributions. In addition, Poisson's ratio exhibits a local minimum in the porosity range of 0.2 < P < 0.25 for both HA and alumina, which may be related to the pore morphology evolution during sintering.  相似文献   

7.
吸声覆盖层研究进展   总被引:3,自引:0,他引:3       下载免费PDF全文
张浩  傅欣艺  尹铫  刘碧龙 《应用声学》2013,32(4):295-304
从粘弹性材料复杂结构吸声性能计算和粘弹性材料动态力学参数获取两方面对吸声覆盖层研究进行了回顾。计算模型主要有分层介质模型、等效介质模型、空腔谐振模型以及数值计算方法。动态力学参数获取主要有基于振动的直接测量方法、基于声学性能测试的反演方法和近些年发展起来的有限元的反演方法。最后对吸声覆盖层研究的发展趋势进行了展望。  相似文献   

8.
We study the elasticity of fibrous materials composed of generalized stiff polymers. It is shown that, in contrast to cellular foam-like structures, affine strain fields are generically unstable. Instead, a subtle interplay between the architecture of the network and the elastic properties of its building blocks leads to intriguing mechanical properties with intermediate asymptotic scaling regimes. We present exhaustive numerical studies based on a finite element method complemented by scaling arguments.  相似文献   

9.
The goal of this paper is to propose an experimental method allowing the identification of the complete elastic tensor of anisotropic biological materials such as wood using only one sample. To do so, two complementary methods are used. First, the wood eigen-directions are defined from a sample of spherical shape that is then cut into a cube in a way to perform resonant ultrasound spectroscopy (RUS). The method is successfully applied on a reference beech sample with known orthotropic directions. A comparison of the identified elastic constants with those from the literature and some inferred from ultrasonic transmission measurements is given.  相似文献   

10.
This paper presents the experimental and theoretical results of applying resonant acoustic spectroscopy (RAS) to determine elastic parameters and losses in such consolidated granular materials as rock and building bricks. First, the theoretical aspects of the RAS method are outlined. A computer code for the rectangular and cylindrical samples was developed and tested. The results of experiments on specimens of rock and ceramic brick are then described. Finally, a modification of the previously published RUS algorithm is presented which permits a significant reduction in computing time for elongated samples.  相似文献   

11.
赵子渊  李昱君  王富帅  张祺  厚美瑛  李文辉  马钢 《物理学报》2018,67(10):104502-104502
废旧橡胶制品颗粒与砂土颗粒混合物作为建筑填充材料具有环保、轻质、减震效果好等特点.软硬组分的混合比例可以调制体系力学性能从而实现兼顾材料柔韧性与强度的需求,但细观层面上材料性能改变的原因尚不明确.本文主要研究玻璃-橡胶混合颗粒体系的弹性行为及其微观机制.利用飞行时间法测量混合材料等效动弹性模量,发现随着橡胶颗粒增加,体系逐渐从类玻璃刚性行为转变为类橡胶柔性行为.离散元模拟结果与实验结果类似.此外,模拟显示低橡胶颗粒占比样品内主要由玻璃颗粒构成主力链结构,而橡胶颗粒基本不参与强力链的构成.当橡胶颗粒占比较大时,玻璃颗粒和橡胶颗粒共同构成主力链网络结构,但颗粒间法向接触力分布相对更为均匀,可视为玻璃颗粒悬浮于橡胶颗粒中.基于上述结果,提出了改进的等效介质理论,用于描述混合颗粒体系的弹性行为.研究认为:橡胶颗粒占比较小时内部颗粒的变形相对均匀,材料近似满足等应变假设,视为并联弹簧模型;橡胶颗粒占比较大时混合材料近似满足等应力假设,视为串联弹簧模型.两种模型得到的结果与模拟结果一致.上述结果有利于从微观角度揭示混合颗粒材料弹性行为的变化机制.  相似文献   

12.
The different ultrasonic fields generated in metallic materials by a laser beam with flat and Gaussian profile are investigated experimentally and using the finite element method (FEM). A high power laser beam irradiating a solid surface produces elastic waves with a mechanics that depends on many parameters, including the profile of the laser beam. The influence of the beam profile is investigated with the FEM analysis, considering the temperature dependence of material properties.  相似文献   

13.
In this paper, the density functional theory calculations are used to obtain the elastic properties of zigzag phosphorene nanotubes. Besides, based on the similarity between phosphorene nanotubes and a space-frame structure, a three-dimensional finite element model is proposed in which the atomic bonds are simulated by beam elements. The results of density functional theory are employed to compute the properties of the beam elements. Finally, using the proposed finite element model, the elastic modulus of the zigzag phosphorene nanotubes is computed. It is shown that phosphorene nanotubes with larger radii have larger Young's modulus. Comparing the results of finite element model with those of density functional theory, it is concluded that the proposed model can predict the elastic modulus of phosphorene nanotubes with a good accuracy.  相似文献   

14.
In the present study contact between elastic–ideally plastic dissimilar spheres are investigated in detail. The investigation is based on numerical methods and in particular the finite element method. The numerical results presented are discussed with respect to correlation of global contact properties as well as the behavior of local field variables such as contact pressure distribution and the evolution of the effective plastic strain. Large deformation effects are accounted for and discussed in detail. The constitutive behavior is described by classical Mises plasticity. It is shown that correlation of the dissimilar contact problem can be accurately achieved based on the Johnson contact parameter with the representative stress chosen as the yield stress of the softer material.  相似文献   

15.
This study is devoted to deducing exact elastic constants of an anisotropic solid material without using any advance information on the elastic constants by incorporating a displacement-distribution measurement into resonant ultrasound spectroscopy (RUS). The usual RUS method measures free-vibration resonance frequencies of a solid and compares them with calculations to find the most suitable set of elastic constants by an inverse calculation. This comparison requires mode identification for the measured resonance frequencies, which has been difficult and never been free from ambiguity. This study then adopts a laser-Doppler interferometer to measure the displacement-distribution patterns on a surface of the vibrating specimen mounted on pinducers; comparison of the measured displacement distributions with those computed permits us to correctly identify the measured resonance frequencies, leading to unmistakable determination of elastic constants. Because the displacement patterns are hardly affected by the elastic constants, an exact answer is surely obtained even when unreasonable elastic constants are used as initial guesses at the beginning of the inverse calculation. The usefulness of the present technique is demonstrated with an aluminum alloy and a langasite crystal.  相似文献   

16.
The acoustic behavior of an acoustically transparent polyurethane and an interpenetrating polymer network of polyurethane with polydimethyl siloxane were studied using dynamic mechanical analysis, finite element modeling, and experimental evaluation of acoustic properties in a water-filled pulse tube setup. Dynamic mechanical measurements in the temperature range -50?°C to +70?°C were carried out, and the data were used for time temperature superposition to generate material behavior at high frequencies. These inputs were used for modeling the acoustic behavior of these materials using ATILA, which is a commercial finite element code, capable of computing transmission and reflection characteristics of materials. From this data, absorption characteristics were computed. The results were compared with the experimental results obtained using a water-filled pulse tube facility.  相似文献   

17.
多振子梁弯曲振动中的局域共振带隙   总被引:4,自引:0,他引:4       下载免费PDF全文
文岐华  左曙光  魏欢 《物理学报》2012,61(3):34301-034301
从梁的弯曲振动方程出发,利用传递矩阵法,给出了无限周期结构的一维多振子声子晶体梁的弯曲振动能带结构,并利用有限元方法计算了有限周期结构梁的弯曲振动频率响应.建立了多振子声子晶体梁的简化模型,推导出带隙起始截止频率公式.结果表明:一维多振子声子晶体梁具有比单振子声子晶体梁更宽更丰富的振动带隙,可应用于呈倍频关系的减振降噪中;振动在带隙频率范围内频率响应具有明显的衰减;所建立的简化模型与理论模型结果符合较好.研究工作为梁类结构的减振提供一种新的思路.  相似文献   

18.
三维材料微结构设计与数值模拟   总被引:2,自引:0,他引:2       下载免费PDF全文
任淮辉  李旭东 《物理学报》2009,58(6):4041-4052
为了研究材料细观尺度的力学性能与失效行为,达到对材料微结构的“性能导向型”设计与性能预测的目的,通过程序设计结合有限元数值模拟的方法实现多元多相异质体材料微观组织结构的计算机仿真、材料微结构的细观力学计算与虚拟失效分析.以材料微观组织结构计算机仿真软件ProDesign构造的多晶体材料与多晶体基复合材料微结构的代表性体积单元为基础,基于对商业有限元软件ABAQUS的二次开发,实现对材料微结构细观力学的数值计算,并根据数值模拟结果预测微结构的材料性能,识别“材料结构弱点”,评估异质体材料微结构内微裂纹的启裂 关键词: 材料微结构 数值模拟 各向异性 虚拟失效  相似文献   

19.
提出了一种纳米尺度的有限元方法,碳纳米管中的碳-碳化学键被模拟为键单元.按照平衡关系,根据有限元理论,作用于每个碳原子上的作用力可以写成键单元的刚度矩阵与每个碳原子位移的乘积.在分子力学的基本假设下,键单元刚度矩阵的每个元素可以写为分子力学中力场常数的函数,这样建立起了宏观力学方法(有限元)与纳米尺度力学方法(分子力学)之间的联系.应用该方法模拟了扶椅型与锯齿型单壁碳纳米管的力学行为从而验证了该方法的有效性.分析结果说明单壁碳纳米管的弹性模量与管厚度的选取直接相关.此外,弹性模量对所选取的分子力学中的力场常数非常敏感,管的弹性模量显示出对半径的尺度依赖性,但是管长度对弹性模量的影响小到可以被忽略.  相似文献   

20.
In this paper, the problem of vibration transmission from slab track structures into bridge is studied by theoretical analysis. A vehicle-track-bridge coupling system dynamics model is established based on a multibody dynamics theory and a finite element method. The system model consists of vehicle model, track-bridge model and wheel/rail interaction model. The vehicle model is established based on the multibody dynamics theory, and the tack-bridge model is established by the finite element method. The vehicle model and track-bridge model are coupled through wheel/rail interaction model, and the track irregularities are included. The system dynamic responses are calculated, and the effectiveness of elastic materials in vibration reducing is discussed. The results demonstrate that elastic materials like slab mat layer inserted between slab track and bridge can reduce vibration transmitted from track into the bridge. Some suggestions for the design and application of slab mat are provided in the end of the paper.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号