首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Electronically coupled porphyrin arrays are suitable for artificial light harvesting antenna in light of a large absorption cross-section and fast excitation energy transfer (EET). Along this line, an artificial energy transfer model system has been synthesized, comprising of an energy donating meso-meso linked Zn(II) porphyrin array and an energy accepting 5,15-bisphenylethynylated Zn(II) porphyrin linked via a 1,4-phenylene spacer. This includes an increasing number of porphyrins in the meso-meso linked Zn(II) porphyrin array, 1, 2, 3, 6, 12, and 24 (Z1A, Z2A, Z3A, Z6A, Z12A, and Z24A). The intramolecular singlet-singlet EET processes have been examined by means of the steady-state and time-resolved spectroscopic techniques. The steady-state fluorescence comes only from the acceptor moiety in Z1A-Z12A, indicating nearly the quantitative EET. In Z24A that has a molecular length of ca. 217 A, the fluorescence comes largely from the acceptor moiety but partly from the long donor array, indicating that the intramolecular EET is not quantitative. The transient absorption spectroscopy has provided the EET rates in real time scale: (2.5 ps)(-1) for Z1A, (3.3 ps)(-1) for Z2A, (5.5 ps)(-1) for Z3A, (21 ps)(-1) for Z6A, (63 ps)(-1) for Z12A, and (108 ps)(-1) for Z24A. These results have been well explained by a revised F?rster equation (Sumi formula), which takes into account an exciton extending coherently over several porphyrin pigments in the donor array, whose length is not much shorter than the average donor-acceptor distance. Advantages of such strongly coupled porphyrin arrays in light harvesting and transmission are emphasized in terms of fast EET and a large absorption cross-section for incident light.  相似文献   

2.
The singlet-singlet intramolecular energy transfer between naphthalene moiety and dansy! group held apart by a rigid steroid bridge was investigated for two molecules: β-(1-naphthyl) acetoxy-17α-dansyl-Δ5androstene (3a) and 3β-(1-naphthyl)acetoxy-17 β-dansyl-Δ5androstene (3b). The rates of energy transfer for 3a and 3b in cyclohexane are 6.9 × 106 and 1.1 × 108 s?1 respectively. The difference in energy transfer rate between 3a and 3b is attributed to the different donor-acceptor separation and orientation. The ratio of the two epimers in the synthesized product mixture was obtained from the fluorescence decay measurements.  相似文献   

3.
An approach to the formation of molecular timepieces is outlined based on differentiating between rotamers in diaxial Sn(IV) porphyrin phenolates. Two models are explored in detail. The first explores how the rates of rotation of the diaxial ligands is discriminated based on steric hindrance of the two porphyrin macrocycle faces at low temperature. The second model explores a ‘stopwatch’ function based on the ligation of Ag(I) ions to a 5,15-dipyridylporphyrinato tin(IV) complex bearing 3-hydroxypyridine ligands. The complexation inhibits rotation of the axial ligand, a result, which can be reversed by precipitation of Ag(I) using tetraethylammonium bromide. X-ray crystallography has also been used to characterize two Ag(I) 5,15-dipyridylporphyrinato tin(IV)complexes. The two isoforms differ in their supramolecular organization. One structure is formed through a cofacial stack linking each porphyrin by Ag(I) coordination. The other displays a sheet-like coordination polymer structure.  相似文献   

4.
We have investigated the overall excitation energy relaxation dynamics in linear porphyrin arrays as well as the energy transport phenomena by attaching an energy acceptor to one end of a linear porphyrin array by using steady state and time-resolved spectroscopic measurements. We have revealed that the solvation dynamics as well as the conformational dynamics contributes significantly to the energy relaxation processes of linear porphyrin arrays. Consequently, long porphyrin arrays no longer serve as good energy transmission elements in donor-acceptor linked systems due to conformational heterogeneities which provide the non-radiative deactivation channels as energy quenchers.  相似文献   

5.
The binding of tetra(4-N,N,N,N-trimethylanilinium)porphyrin (TAP) to melanins quenches the porphyrin emission. Time-resolved femtosecond absorption spectroscopy reveals that the mechanism behind this quenching is ultrafast nonradiative energy transfer ((tau)ET < 100 fs) from electronically excited TAP to melanin. Similar dynamics are observed for both dopa and cysteinyldopa melanins. Steady-state emission studies demonstrate that the emission from melanin increases upon excitation of bound TAP, thereby confirming that rapid energy transfer occurs. These results are consistent with previous photoacoustic studies, which revealed that the TAP-melanin complex behaves like a supermolecular system liberating heat as a whole.  相似文献   

6.
We report the synthesis, structure and properties of the cyanide-bridged dinuclear complex ions [Ru(L)(bpy)(μ-NC)M(CN)(5)](2-/-) (L = tpy, 2,2';6',2'-terpyridine, or tpm, tris(1-pyrazolyl)methane, bpy = 2,2'-bipyridine, M = Fe(II), Fe(III), Cr(III)) and the related monomers [Ru(L)(bpy)X](2+) (X = CN(-) and NCS(-)). All the monomeric compounds are weak MLCT emitters (λ = 650-715 nm, ? ≈ 10(-4)). In the Fe(II) and Cr(III) dinuclear systems, the cyanide bridge promotes efficient energy transfer between the Ru-centered MLCT state and a Fe(II)- or Cr(III)-centered d-d state, which results either in a complete quenching of luminescence or in a narrow red emission (λ ≈ 820 nm, ? ≈ 10(-3)) respectively. In the case of Fe(III) dinuclear systems, an electron transfer quenching process is also likely to occur.  相似文献   

7.
8.
A study was carried out on the optical properties of multilayered surface structures obtained by the coordination binding of gold nanoparticles to a silver surface by Zr(IV) ions. Such a system displays high absorption capacity in a broad spectral range (200-2000 nm), which is observed visually as an ultra-black coating. A physical interpretation of this effect is attributed to an interaction between plasmon excitations on the silver surface and the gold nanoparticle film separated by a dielectric bridge structure consisting of d-metal ions.  相似文献   

9.
A series of six new dyads consisting of a zinc or magnesium porphyrin appended to a platinum terpyridine acetylide complex via a para-phenylene bisacetylene spacer are described. Different substituents on the 4' position of the terpyridinyl ligand were explored (OC7H15, PO3Et2, and H). The ground-state electronic properties of the dyads are studied by electronic absorption spectroscopy and electrochemistry, and they indicate some electronic interactions between the porphyrin subunit and the platinum complex. The photophysical properties of these dyads were investigated by steady-state, time-resolved, and femtosecond transient absorption spectroscopy in N,N-dimethylformamide solution. Excitation of the porphyrin unit leads to a very rapid electron transfer (2-20 ps) to the nearby platinum complex followed by an ultrafast charge recombination, thus preventing any observation of the charge separated state. The variation in the rate of the photoinduced electron transfer in the series of dyads is consistent with Marcus theory. The results underscore the potential of the para-phenylene bisacetylene bridge to mediate a rapid electron transfer over a long donor-acceptor distance.  相似文献   

10.
A trinuclear [[Ru(II)(bpy)(2)(bpy-terpy)](2)Fe(II)](6+) complex (I) in which a Fe(II)-bis-terpyridine-like centre is covalently linked to two Ru(II)-tris-bipyridine-like moieties by a bridging bipyridine-terpyridine ligand has been synthesised and characterised. Its electrochemical, photophysical and photochemical properties have been investigated in CH(3)CN and compared with those of mononuclear model complexes. The cyclic voltammetry of (I) exhibits, in the positive region, two successive reversible oxidation processes, corresponding to the Fe(III)/Fe(II) and Ru(III)/Ru(II) redox couples. These systems are clearly separated (DeltaE(1/2) = 160 mV), demonstrating the lack of an electronic connection between the two subunits. The two oxidized forms of the complex, [[Ru(II)(bpy)(2)(bpy-terpy)](2)Fe(III)](7+) and [[Ru(III)(bpy)(2)(terpy-bpy)](2)Fe(III)](9+), obtained after two successive exhaustive electrolyses, are stable. (I) is poorly luminescent, indicating that the covalent linkage of the Ru(II)-tris-bipyridine to the Fe(II)-bis-terpyridine subunit leads to a strong quenching of the Ru(II)* excited state by energy transfer to the Fe(II) centre. Luminescence lifetime experiments show that the process occurs within 6 ns. The nature of the energy transfer process is discussed and an intramolecular energy exchange is proposed as a preferable deactivation pathway. Nevertheless this energy transfer can be efficiently quenched by an electron transfer process in the presence of a large excess of the 4-bromophenyl diazonium cation, playing the role of a sacrificial oxidant. Finally complete photoinduced oxidation of (I) has been performed by continuous photolysis experiments in the presence of a large excess of this sacrificial oxidant. The comparison with a mixture of the corresponding mononuclear model complexes has been made.  相似文献   

11.
Photoexcitation of an electron donor-acceptor linked dyad containing gold(III) and zinc(II) porphyrins (ZnPQ-AuIIIPQ+) results in electron transfer from the singlet excited state of ZnPQ to the metal center of AuPQ+ to produce the charge-separated state (ZnPQ*+-AuIIPQ) which has a long lifetime (10 mus) in nonpolar solvents such as cyclohexane and toluene.  相似文献   

12.
A tetrametallic iridium-ytterbium complex has been synthesised that shows sensitized near-infrared emission (lambda(max) = 976 nm) upon excitation of the iridium unit in the visible region (400 nm) due to efficient energy transfer from the iridium units to the Yb(III) ion. The iridium phosphorescence is quenched nearly quantitatively while the ytterbium ion emits brightly in the NIR.  相似文献   

13.
The bichromophoric system Ru-Ru(C)-PI ([(bpy)3Ru-Ph-Ru(dpb)(Metpy-PI)][PF6]3, where bpy is 2,2'-bipyridine, Hdpb is 1,3-di(2-pyridyl)-benzene, Metpy is 4'-methyl-2,2':6',2' '-terpyridine and PI is pyromellitimide) containing two Ru(II) polypyridyl chromophores with a N6 and a N5C ligand set, respectively, was synthesized and characterized. Its photophysical properties were investigated and compared to those of the monochromophoric cyclometalated complexes Ru(C)-PI ([Ru(dpb)(Metpy-PI)][PF6]), Ru(C)-phi-PI ([Ru(dpb)(ttpy-PI)][PF6], ttpy is 4'-p-tolyl-2,2':6',2' '-terpyridine), Ru(C)-phi ([Ru(dpb)(ttpy)][PF6]), and Ru(C) ([Ru(dpb)(Metpy)][PF6]). Excitation of the Ru(C) unit in the dyads leads to oxidative quenching, forming the Ru(C)(III)-phi-PI*- and Ru(C)(III)-Pl.- charge-separated (CS) states with k(f)(ET) = 7.7 x 10(7) s(-1) (CH3CN, 298 K) in the tolyl-linked Ru(C)-phi-PI and k(f)(ET) = 4.4 x 10(9) s(-1) (CH2Cl2, 298 K) in the methylene-linked Ru(C)-PI. In the Ru-Ru(C)-PI triad, excitation of the Ru(C) chromophore leads to dynamics similar to those in the Ru(C)-PI dyad, generating the Ru(II)-Ru(C)(III)-PI*- CS state, whereas excitation of the Ru unit results in an initial energy transfer (k(EnT) = 4.7 x 10(11) s(-1)) to the cyclometalated Ru(C) unit. Subsequent electron transfer to the PI acceptor results in the formation of the same Ru(II)-Ru(C)(III)-PI*- CS state with k(f)(ET) = 5.6 x 10(9) s(-1) that undergoes rapid recombination with k(b)(ET) = 1 x 10(10) s(-1) (CH2Cl2, 298 K). The fate of the Ru(II)-Ru(C)(III)-PI*- CS state upon a second photoexcitation was studied by pump-pump-probe experiments in an attempt to detect the fully charge-separated Ru(III)-Ru(C)(II)-PI*- state.  相似文献   

14.
Itou M  Otake M  Araki Y  Ito O  Kido H 《Inorganic chemistry》2005,44(5):1580-1587
Photoinduced electron-transfer processes from the excited triplet states of zinc tetraphenylporphyrin (3ZnTPP*) or zinc tetra-tert-butylphthalocyanine (3ZnTBPc*) to oxo-acetato-bridged triruthenium clusters [Ru3(mu3-O)(mu-CH3CO2)6(L)3]+ have been confirmed by nanosecond laser flash photolysis in the visible and near-IR regions. The rise of the transient absorption spectra of the radical cations of ZnTPP and ZnTBPc and the reduced form of the oxo-acetato-bridged triruthenium cluster ([Ru3(mu3-O)(mu-CH3CO2)6(L)3]0) were observed with the concomitant decays of 3ZnTPP* or 3ZnTBPc*. The evaluated rate constants (kET) and quantum yields (PhiET) for electron-transfer were increased with the order of electron-withdrawing ability of the ligands (L) coordinated to the Ru atoms, 4-cyanopyridine > triphenylphosphine > pyridine > 4-(dimethylamino)pyridine, which is the order of promoting the electron-accepting ability of [Ru3(mu3-O)(mu-CH3CO2)6(L)3]+. The PhiET values for 3ZnTPP* were lower than those for 3ZnTBPc*, suggesting the presence of competitive processes such as energy transfer process from 3ZnTPP* to the triplet states of [Ru3(mu3-O)(mu-CH3COO)6(L)3]+. For the back electron-transfer process, second-order kinetics indicates that the radical cations of ZnTPP or ZnTBPc and [Ru3(mu3-O)(mu-CH3COO)6(L)3]0 return to the original system after solvation in polar solvents at a diffusion controlled limit without side reactions, providing reversible photosensitizing intermolecular electron-transfer systems.  相似文献   

15.
A small RNA motif is used as a target for ligand-based NMR-screening by saturation transfer difference (STD) NMR experiments. The prerequisites for using a small RNA target in STD experiments, such as saturation time, frequency, and pulses, are discussed. We also show that it is of advantage to use D2O as solvent instead of H2O due to the reduced R1 relaxation rate in D2O. The 27-nucleotide model of the ribosomal A-site was known to bind the aminoglycoside paromomycin with high affinity. This binding interaction could be detected easily, proving the effectiveness of STD NMR experiments as a screening tool for RNA-ligand interactions.  相似文献   

16.
The mechanism of sulfoxidation of thioaniosoles by a non-heme iron(IV)-oxo complex is switched from direct oxygen transfer to metal ion-coupled electron transfer by the presence of Sc(3+). The switch in the sulfoxidation mechanism is dependent on the one-electron oxidation potentials of thioanisoles. The rate of sulfoxidation is accelerated as much as 10(2)-fold by the addition of Sc(3+).  相似文献   

17.
A wide range of aliphatic or aromatic sulfides are selectively oxidized to the corresponding sulfoxides using ammonium cerium (IV) nitrate (CAN) and a catalytic amount of KBr or NaBr in the presence of wet SiO2 in CH2Cl2 under heterogeneous conditions in moderate to high yields.  相似文献   

18.
A wide range of aliphatic or aromatic sulfides are selectively oxidized to the corresponding sulfoxides using ammonium cerium (IV) nitrate (CAN) and a catalytic amount of KBr or NaBr in the presence of wet SiO2 in CH2Cl2 under heterogeneous conditions in moderate to high yields. Correspondence: Mohammad Ali Zolfigol, Faculty of Chemistry, Bu-Ali Sina University, P.O. Box 6517838683, Hamadan, Iran; Kamal Amani, Department of Chemistry, Faculty of Science, University of Kurdistan, P.O. Box 6617715175, Sanandaj, Iran.  相似文献   

19.
It is well-known that the structures of trialkyltin(IV) carboxylates can be either monomeric, polymeric, or cyclooligomeric in the solid state. In contrast, all dialkyltin(IV) dicarboxylates characterized so far in the solid state have monomeric or polymeric structures, however, for some cases it has been proposed that their solution-state structure is cyclooligomeric. In order to generate more information on this subject, dimethyl- and di-n-butyltin(IV) complexes with phthalic and isophthalic acid have been prepared and analyzed both in solution and in the solid state. The solid-state structures of the two dialkyltin(IV) phthalates examined herein contain polymeric molecular chains, however, with supramolecular Sn.O' interactions, which result in the generation of cyclooligomeric units. This provides evidence for the presence of discrete cyclooligomeric structures in solution, which are involved in fast dynamic exchange equilibria as evidenced by (1)H, (13)C, and (119)Sn NMR spectroscopy. In the case of the two dialkyltin(IV) isophthalate complexes studied herein (R = Me, n-Bu), only the di-n-butyltin derivative is soluble and NMR spectroscopy as well as FAB(+) spectrometry indicates the formation of cyclic dinuclear, trinuclear, and/or tetranuclear species in solution, which may be involved also in fast dynamic exchange equilibria. In the solid state, however, discrete cyclotrinuclear units can be identified, in which the 24-membered macrocyclic cavity is almost completely planar, having six oxygen atoms directed into its interior and six Sn-n-butyl groups approximately perpendicular to the molecular plane. The diameter of the cyclic cavity can be described by the transannular O.O distances that vary from 7.68 to 7.84 A, being large enough for the introduction of linear alkyl groups. This can be demonstrated by the supramolecular structure of this compound, which contains a new type of bis[2]pseudorotaxane formed between two molecules through mutual threading via two of the Sn-butyl groups. Such a supramolecular entity has been unknown so far, since the usual composition of bis[2]pseudorotaxanes is the trimolecular combination of a macrocyclic ring system with two threads.  相似文献   

20.
Two [(bpy)Re(CO)3L]+ complexes (bpy = 2,2'-bipyridine), where L contains an aza-15-crown-5 ether which is linked to Re via an alkenyl- or alkynyl-pyridine spacer, have been synthesised along with model complexes. Solutions of the complexes in acetonitrile have been studied by UV-Vis absorption spectroscopy, and by 1D and 2D 1H NMR spectroscopy. Strong UV-Vis bands, assigned to intraligand charge-transfer transitions localised at the L ligands, blue shift on protonation of the azacrown nitrogen atom or on complexation of alkali-metal (Li+, Na+ and K+) or alkaline-earth metal (Mg2+, Ca2+ and Ba2+) cations to the azacrown; the magnitude of the blue shift is dependent on the cation, with protonation giving the largest shift of ca. 100 nm. Cation binding constants in the range of log K= 1-4 depend strongly on the identity of the metal cation. Protonation or cation complexation causes downfield shifts in the 1H NMR resonances from most of the azacrown and L ligand protons, and their magnitudes correlate with those of the blue shifts in the UV-Vis bands; shifts in the azacrown 1H NMR resonances report on how the different metal cations interact with the macrocycle. UV-Vis and 1H NMR spectra of the free L ligands enable the effect of the Re centre to be assessed. Together, the data indicate that the alkene spacer gives a more responsive sensor than the alkyne spacer by providing stronger electronic communication across the L ligand.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号