首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We report herein biotin-streptavidin-mediated aggregation studies of long gold nanorods. We have previously demonstrated end-to-end linkages of gold nanorods driven by the biotin-streptavidin interaction (Caswell et al. J. Am. Chem. Soc. 2003, 125, 13914). In that report, the specific binding of biotin disulfide to the gold nanorod edges was achieved due to the preferred binding of thiol molecules to the Au[111] surface (gold nanorod ends) as opposed to the gold nanorod side faces. This led to the end-end linkage of gold nanorods upon subsequent addition of streptavidin. In this report we demonstrate a simple procedure to biotinylate the entire gold nanorod surface and subsequently form a 3-D assembly by addition of streptavidin. Gold nanorods were synthesized by the three-step seeding protocol documented in our previous articles. The surface of gold nanorods was further modified by a layer of a weak polyelectrolyte, poly(acrylic acid), PAA. A biotin molecule which has an amine group at one end (biotin-PEO-amine) was anchored to the carboxylic acid group of the polyelectrolyte using the well-known carbodiimide chemistry. This process biotinylates the entire gold nanorod surface. Addition of streptavidin further leads to aggregation of gold nanorods. A closer look at the aggregates reveals a preferential side-to-side assembly of gold nanorods. The gold nanorods were characterized at each stage by UV-vis spectroscopy, light scattering, and transmission electron microscopy (TEM) measurements.  相似文献   

2.
We report the immobilization of gold nanorods onto self-assembled monolayers (SAMs) of 16-mercaptohexadecanoic acid (16-MHA). The simple two step protocol involves formation of a SAM of 16-MHA molecules onto gold-coated glass slides and subsequent immersion of these slides into the gold nanorod solution. The nanorods, formed by a seed-mediated, surfactant-assisted synthesis protocol, are stabilized in solution due to surface modification by the surfactant cetyltrimethylammonium bromide (CTAB). Attractive electrostatic interactions between the carboxylic acid group on the SAM and the positively charged CTAB molecules are likely responsible for the nanorod immobilization. UV-vis spectroscopy has been used to follow the kinetics of the nanorod immobilization. The nature of interaction between the gold nanorods and the 16-MHA SAM has been probed by Fourier transform infrared spectroscopy (FTIR). The surface morphology of the immobilized rods is studied by scanning electron microscopy (SEM) and atomic force microscopy (AFM) measurements. SEM was also used to determine the density of the immobilized nanorods as a function of the pH of immobilization. Control over the surface coverage of the immobilized gold nanorods has been demonstrated by simple pH variation. Such well-dispersed immobilized gold nanorods with control over the surface coverage could be interesting substrates for applications such as surface-enhanced Raman spectroscopy (SERS).  相似文献   

3.
Here, we report the synthesis and characterization of organo-soluble chiral thiol-monolayer-protected gold nanorods. The resulting gold nanorods respectively covered with two opposite enantiomers via the strong covalent Au-S linkage were found to not only be stable in both organic media and solid state, but also show optical activity. Their circular dichroism (CD) spectra exhibited a mirror image relationship, indicating that enantiomeric thiol surfactant on gold surface can produce the corresponding enantiomeric gold nanorods. The densely packed azobenzene thiol monolayer on gold surface exhibited a photoresponsive behavior upon irradiation with 254 nm light instead of 365 nm light, which was found to have an effect on plasmonic absorption of gold nanorods.  相似文献   

4.
As-prepared gold nanorods, stable in aqueous solution, bear a bilayer of the cationic surfactant cetyltrimethylammonium bromide (CTAB). This bilayer provides a approximately 3 nm thick hydrophobic layer that could be used to sequester hydrophobic organic molecules from aqueous solution. We have investigated the uptake of 1-naphthol as a model hydrophobic compound by CTAB-coated gold nanorods using both ultraviolet-visible spectroscopy and gas chromatography with flame ionization detection. We find the adsorption isotherm of 1-naphthol partitioning into the CTAB bilayer on gold nanorods fits the Langmuir model. The maximum number of bound 1-naphthol molecules is 14.6 +/- 2.2 x 10(3) molecules per gold nanorod, with an equilibrium binding constant of 1.97 +/- 0.79 x 10(4) M(-1) at room temperature.  相似文献   

5.
Gold nanorods have great potential in a variety of applications because of their unique physical properties. In this article, we present the layer-by-layer (LbL) assembly of thin films containing positively charged gold nanorods that are covalently functionalized by cationic thiol molecules. The cationic gold nanorods are uniformly distributed in ultrathin nanocomposite LbL thin films. We studied the collective surface plasmon resonance coupling in the LbL films via UV-visible spectroscopy and evaluated their application in the surface-enhanced Raman scattering detection of rhodamine 6G probe molecules. Furthermore, we successfully manufactured freestanding nanoscale thin films containing multilayers of gold nanorods with a total thickness of less than 50 nm. The surface morphology and their optical and mechanical properties were systematically investigated, and the polycationic gold nanorods were found to play an important role in manipulating the properties of the nanocomposite thin films. Our findings reveal that such nanorods are excellent building blocks for constructing functional LbL films with tunable plasmonic behavior and robust mechanical properties.  相似文献   

6.
Tip-functionalized nanorods: Single-particle spectroscopy shows that functionalization of small gold nanorods with thiol groups leads to a broadening of the plasmon resonance by chemical interface damping. By specifically functionalizing the tips of the nanorod this broadening is nearly eliminated while the sensing performance is maintained relative to fully functionalized particles.  相似文献   

7.
Preparation and optical properties of worm-like gold nanorods   总被引:1,自引:0,他引:1  
A type of worm-like nanorods was successfully synthesized through conventional gold nanorods reacting with Na2S2O3 or Na2S. The generated worm-like gold nanorods comprise shrunk nanorod cores and enwrapped shells. Therefore, a gold-gold sulfide core-shell structure is formed in the process, distinguishing from their original counterparts. The formation of the gold chalcogenide layers was confirmed by transmission electron microscopy and X-ray photoelectron spectroscopy. Experimental results showed that the thickness of the gold chalcogenide layers is controllable. Since the increase of shell thickness and decrease of gold nanorod core take place simultaneously, it allows one to tune the plasmon resonance of nanorods. Proper adjustment of reaction time, temperature, additives and other experimental conditions will produce worm-like gold nanorods demonstrating desired longitudinal plasmon wavelength (LPW) with narrow size distributions, only limited by properties of starting original gold nanorods. The approach presented herein is capable of selectively changing LPW of the gold nanorods. Additionally, the formed worm-like nanorods possess higher sensitive property in localized surface plasmon resonance than the original nanorods. Their special properties were characterized by spectroscopic methods such as Vis-NIR, fluorescence and resonance light scattering. These features imply that the gold nanorods have potential applications in biomolecular recognition study and biosensor fabrications.  相似文献   

8.
We report the construction of a novel biosensing nanodevice to detect single, sequence-specific target DNA molecules. Nanodevice assembly occurs through the association of an immobilized F1-ATPase molecular motor and a functionalized gold nanorod via a single 3',5'-dibiotinylated DNA molecule. Target-dependent 3',5'-dibiotinylated DNA bridges form by combining ligation and exonucleation reactions (LXR), with a specificity capable of selecting against a single nucleotide polymorphism (SNP). Using dark field microscopy to detect gold nanorods, quantitation of assembled nanodevices is sufficient to distinguish the presence of as few as 1800 DNA bridges from nonspecifically bound nanorods. The rotary mechanism of F1-ATPase can drive gold nanorod rotation when the nanorod is attached via the DNA bridge. Therefore, rotation discriminates fully assembled devices from nonspecifically bound nanorods, resulting in a sensitivity limit of one zeptomole (600 molecules).  相似文献   

9.
Capillary assembly was explored for the precise placement of 25 nm × 70 nm colloidal gold nanorods on prestructured poly(dimethylsiloxane) template surfaces. The concentration of nanorods and cationic surfactant cetyltrimethylammonium bromide (CTAB), the template wettability, and most critically the convective transport of the dispersed nanorods were tuned to study their effect on the resulting assembly yield. It is shown that gold nanorods can be placed into arrayed 120-nm diameter holes, achieving assembly yields as high as 95% when the local concentration of nanorods at the receding contact line is sufficiently high. Regular arrays of gold nanorods have several benefits over randomly deposited nanorod arrangements. Each assembled nanorod resides at a precisely defined location and can easily be found for subsequent characterization or direct utilization in a device. The former is illustrated by collecting scattering spectra from single nanorods and nanorod dimers, followed by subsequent SEM characterization without the need for intricate registration schemes.  相似文献   

10.
Novel gold nanoparticles modified with a mixed self-assembled monolayer of porphyrin alkanethiol and short-chain alkanethiol were prepared (first step) to examine the size and shape effects of surface holes (host) on porphyrin-modified gold nanoparticles. The porphyrin-modified gold nanoparticles with a size of about 10 nm incorporated C60 molecules (guest) into the large, bucket-shaped holes, leading to the formation of a supramolecular complex of porphyrin-C60 composites (second step). Large composite clusters with a size of 200-400 nm were grown from the supramolecular complex of porphyrin-C60 composites in mixed solvents (third step) and deposited electrophoretically onto nanostructured SnO2 electrodes (fourth step). Differences in the porphyrin:C60 ratio were found to affect the structures and photoelectrochemical properties of the composite clusters in mixed solvents as well as on the SnO2 electrodes. The photoelectrochemical performance of a photoelectrochemical device consisting of SnO2 electrodes modified with the porphyrin-C60 composites was enhanced relative to a reference system with small, wedged-shaped surface holes on the gold nanoparticle. Time-resolved transient absorption spectroscopy with fluorescence lifetime measurements suggest the occurrence of ultrafast electron transfer from the porphyrin excited singlet states to C60 or the formation of a partial charge-transfer state in the composite clusters of supramolecular complexes formed between porphyrin and C60 leading to efficient photocurrent generation in the system. Elucidation of the relationship between host-guest interactions and photoelectrochemical function in the present system will provide valuable information on the design of molecular devices and machines including molecular photovoltaics.  相似文献   

11.
A chemical procedure to replace the cetyltrimethylammonium bromide (CTAB) cap on gold nanorods (GNRs) fabricated through seed-mediated growth with organothiol compounds [3-animo-5-mercapto-1,2,4-triazole (AMTAZ) and 11-mercaptoundecaonic acid (MUDA)] was developed to reduce the cytotoxity of GNRs and facilitate further biofunctionalization. Compared to phosphatidylcholine (PC) modification, our procedure yields stable GNRs that are biocompatible and suitable for whole-cell studies. The PC-, AMTAZ-, and MUDA-activated GNRs all showed low cytotoxicity. By choosing different organothiols, net positive or negative charges could be created on the nanorod surface, for different applications. Gold nanorod molecular probes (GNrMPs) were fabricated by subsequent attachment of antibodies to the activated GNRs and were used to visualize and detect cell surface biomarkers in normal and transformed human breast epithelial cells, demonstrating the potential of developing novel biosensors using gold nanorods. The sensitivity of GNrMPs made from organothiol-activated GNRs is considerably higher than that of CTAB/PC-activated GNRs, demonstrating that the protocol reported here is favored in developing molecular probes using GNRs.  相似文献   

12.
Self-assembled monolayers(SAMs) of thiol-derivatized porphyrin molecules on Au substrate have attracted extensively interest for use in sensing,optoelectronic devices and molecular electronics.In this paper,tetra-[p-(3-mercaptopropyloxy)-phenyl]porphyrin was synthesized and self-assembled with thiol on Au substrate for porphyrin SAMs(PPS 4).The electrochemical results demonstrated that PPS 4 could form excellent SAMs on gold surface.Self-assembled nanojunctions of PPS 4 were fabricated by using gold nanogap electrodes(gap width:ca.100 nm).With the light on/off,the nanojunctions showed current high/low as nanometer scaled photo switch.  相似文献   

13.
Azide-derivatized gold nanorods: functional materials for "click" chemistry   总被引:4,自引:0,他引:4  
We describe herein the synthesis of functional gold nanorods suitable for carrying out "click" chemistry reactions. Gold nanorods modified with a copolymer containing sulfonate and maleic acid groups have been conjugated to a bifunctional azide molecule (amine-PEG-azide). The maleic acid molecules in the copolymer participate in carbodiimide-mediated amide bond formation with amine groups of the azide linker, whereas the sulfonate groups prevent nanorod aggregation in water. Spectroscopic and zeta-potential measurements have been used to confirm the successful surface modification of the gold nanorods. These azide-functionalized nanorods can carry out chemical reactions based on click chemistry. As a case study, we have demonstrated the "clicking" of azide-nanorods to an acetylene-functionalized enzyme, trypsin, by a copper-catalyzed 1,3-dipolar cycloaddition reaction. The enzyme is not only stable after bioconjugation but is also biologically active, as demonstrated by its digestion of the protein casein. For comparison, the biological activity of trypsin conjugated to gold nanorods by two other commonly used methods (carbodiimide-mediated covalent attachment via amide bond formation and simple electrostatic adsorption) has been studied. The enzyme conjugated by click chemistry demonstrates improved biological activity compared with other forms of bioconjugation. This general and simple approach is easy, specific with higher yields, environmentally benign, and applicable to a wide range of analytes and biomolecules.  相似文献   

14.
Praseodymium hydroxide nanorods were synthesized by a two-step approach: First, metallic praseodymium was used to form praseodymium chloride, which reacted subsequently with KOH solution to produce praseodymium hydroxide. In the second step the hydroxide was treated with a concentrated alkaline solution at 180 degrees C for 45 h, yielding nanorods as shown by the scanning and transmission electron microscopy images. The results of X-ray diffraction and energy-dispersive X-ray spectroscopy experiments indicate that these nanorods are pure praseodymium hydroxide with a hexagonal structure, which can be converted into praseodymium oxide (Pr6O11) nanorods of a face-centered cubic structure after calcination at 600 degrees C for 2 h in air. Gold was loaded on the praseodymium oxide nanorods using HAuCl4 as the gold source, and NaBH4 was used to reduce the gold species to metallic nanoparticles with sizes of 8-12 nm on the nanorod surface. These Au/Pr6O11 nanorods exhibit superior catalytic activity for CO oxidation.  相似文献   

15.
Magnetic CoNi@Au core–shell nanorods have been electrochemically synthesized, characterized and functionalized to test their inherent cytotoxicity in order to assess their potential use for biomedical applications. The initially electrodeposited CoNi nanorods have been covered with a gold layer by means of galvanic displacement to minimize the nanowires toxicity and their aggregation, and favour the functionalization. The presence of a gold layer on the nanorod surface slightly modifies the magnetic behaviour of the as-deposited nanorods, maintaining their soft-magnetic behaviour and high magnetization of saturation. The complete covering of the nanorods with the gold shell favours a good functionalization with a layer of (11-Mercaptoundecyl)hexa(ethylene glycol) molecules, in order to create a hydrophilic coating to avoid the aggregation of nanorods, keeping them in suspension and give them stability in biological media. The presence of the organic layer incorporated was detected by means of electrochemical probe experiments. A cytotoxicity test of functionalized core–shell nanorods, carried out with adherent HeLa cells, showed that cell viability was higher than 80% for amounts of nanorods up to 10 μg mL 1. These results make functionalized nanorods promising vehicles for targeted drug delivery in medicine, which gives a complementary property to the magnetic nanoparticles.  相似文献   

16.
P-aminothiophenol (PATP) is a well-known molecule for the preparation of self-assembled monolayers on gold via its thiol functional group. After adsorption, it has been demonstrated that this molecule is anchored to gold through its thiol group, and standing nearly upright at the surface with the amino functional group on top. This molecule has been extensively studied by surface enhanced Raman spectroscopy but its exact SERS spectrum remains unclear. Here, we demonstrate that it can be strongly affected by at least two experimental parameters: laser power and layer density. Those features are discussed in terms of a dimerization of the PATP molecules. The free amino group affords the adsorption of other molecules such as C(60). In this case, a complex multilayer system is formed and the question of its precise characterisation remains a key point. In this article, we demonstrate that surface enhanced Raman spectroscopy combined with x ray photoelectron spectroscopy can bring very important information about the organization of such a self-assembled multilayer on gold. In our study, the strong evolution of Raman modes after C(60) adsorption suggests a change in the organization of aminothiophenol molecules during C(60) adsorption. These changes, also observed when the aminothiophenol layer is annealed in toluene, do not prevent the adsorption of C(60) molecules.  相似文献   

17.
Synthesis of hybrid CdS-Au colloidal nanostructures   总被引:1,自引:0,他引:1  
We explore the growth mechanism of gold nanocrystals onto preformed cadmium sulfide nanorods to form hybrid metal nanocrystal/semiconductor nanorod colloids. By manipulating the growth conditions, it is possible to obtain nanostructures exhibiting Au nanocrystal growth at only one nanorod tip, at both tips, or at multiple locations along the nanorod surface. Under anaerobic conditions, Au growth occurs only at one tip of the nanorods, producing asymmetric structures. In contrast, the presence of oxygen and trace amounts of water during the reaction promotes etching of the nanorod surface, providing additional sites for metal deposition. Three growth stages are observed when Au growth is performed under air: (1) Au nanocrystal formation at both nanorod tips, (2) growth onto defect sites on the nanorod surface, and finally (3) a ripening process in which one nanocrystal tip grows at the expense of the other particles present on the nanorod. Analysis of the hybrid nanostructures by high-resolution TEM shows that there is no preferred orientation between the Au nanocrystal and the CdS nanorod, indicating that growth is nonepitaxial. The optical signatures of the nanocrystals and the nanorods (i.e., the surface plasmon and first exciton transition peaks, respectively) are spectrally distinct, allowing the different stages of the growth process to be easily monitored. The initial CdS nanorods exhibit band gap and trap state emission, both of which are quenched during Au growth.  相似文献   

18.
We demonstrate seedless synthesis of gold nanorods at high temperatures up to 97 degrees C. Using the correct silver nitrate concentration is crucial for formation of rod-shaped particles at all temperatures. We observed a decrease of nanorod length with increasing temperature, while the width stays constant throughout the temperature range. From kinetics studies, we show 3 orders of magnitude increase in nanorod growth rate when the temperature is raised from room temperature to 97 degrees C. From the temperature dependence of the growth rate, we obtain a average activation energy for growth on all facets of 90 +/- 10 kJ mol(-1). High-temperature synthesis of gold nanorods presents a more attractive method for scalable flow-based production of gold nanorods.  相似文献   

19.
The principles of colorimetric detecting oligonucleotides with the help of gold nanospheres and nanorods are discussed. Marker sequences of fragments of HIV-1 genome and Bacillus anthracis are used as models. Experimental data are reported that demonstrate the influence of gold nanorod morphology on the reproducibility of colorimetric tests. A new method is proposed for detecting oligonucleotides based on the application of positively charged gold nanospheres in combination with absorption spectroscopy and dynamic light scattering. Charge reversal of negatively charged gold nanospheres is implemented through the bilayer adsorption of cetyltrimethylammonium bromide molecules. The sensitivity of the proposed method is comparable with the detection of DNA sequences via the colorimetric protocol using nanorods, but it is more simple and stable from the viewpoint of realization. It is shown that the colorimetric tests using gold nanorods and nanospheres do not provide reliable information on the presence of single- and three-base mismatches in target oligonucleotides.  相似文献   

20.
We have investigated optical properties of single gold nanorods by using an apertured-type scanning near-field optical microscope. Near-field transmission spectrum of single gold nanorod shows several longitudinal surface plasmon resonances. Transmission images observed at these resonance wavelengths show oscillating pattern along the long axis of the nanorod. The number of oscillation increases with decrement of observing wavelength. These spatial characteristics were well reproduced by calculated local density-of-states maps and were attributed to spatial characteristics of plasmon modes inside the nanorods. Dispersion relation for plasmons in gold nanorods was obtained by plotting the resonance frequencies of the plasmon modes versus the wave vectors obtained from the transmission images.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号