首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Let p be a prime, χ denote the Dirichlet character modulo p, f (x) = a 0 + a 1 x + ... + a k x k is a k-degree polynomial with integral coefficients such that (p, a 0, a 1, ..., a k ) = 1, for any integer m, we study the asymptotic property of
$ \sum\limits_{\chi \ne \chi _0 } {\left| {\sum\limits_{a = 1}^{p - 1} {\chi (a)e\left( {\frac{{f(a)}} {p}} \right)} } \right|^2 \left| {L(1,\chi )} \right|^{2m} } , $ \sum\limits_{\chi \ne \chi _0 } {\left| {\sum\limits_{a = 1}^{p - 1} {\chi (a)e\left( {\frac{{f(a)}} {p}} \right)} } \right|^2 \left| {L(1,\chi )} \right|^{2m} } ,   相似文献   

2.
3.
Let x?=?[0; a 1 , a 2 , …] be the regular continued fraction expansion of an irrational number x ∈ [0, 1]. For the derivative of the Minkowski function ?(x) we prove that ?′(x)?=?+, provided that \( \mathop {{\lim \sup }}\limits_{t \to \infty } \frac{{{a_1} + \cdots + {a_t}}}{t} < {\kappa_1} = \frac{{2\log {\lambda_1}}}{{\log 2}} = {1.388^{+} } \), and ?′(x)?=?0, provided that \( \mathop {{\lim \inf }}\limits_{t \to \infty } \frac{{{a_1} + \cdots + {a_t}}}{t} > {\kappa_2} = \frac{{4{L_5} - 5{L_4}}}{{{L_5} - {L_4}}} = {4.401^{+} } \), where \( {L_j} = \log \left( {\frac{{j + \sqrt {{{j^2} + 4}} }}{2}} \right) - j \cdot \frac{{\log 2}}{2} \). Constants κ1, κ2 are the best possible. It is also shown that ?′(x)?=?+ for all x with partial quotients bounded by 4.  相似文献   

4.
Let ${\rm} A=k[{u_{1}^{a_{1}}},{u_{2}^{a_{2}}},\dots,{u_{n}^{a_{n}}},{u_{1}^{c_{1}}} \dots {u_{n}^{c_{n}}},{u_{1}^{b_{1}}} \dots {u_{n}^{b_{n}}}]\ \subset k[{u_{1}}, \dots {u_{n}}],$ where, aj, bj, Cj ∈ ?, aj > 0, (bj, Cj) ≠ (0,0) for 1 ≤ j ≤ n, and, further ${\underline b}:=\ ({b_{1}}, \dots,{b_{n}})\ \not=\ 0 $ and ${\underline c}:=\ ({c_{1}}, \dots,{c_{n}})\ \not=\ 0 $ . The main result says that the defining ideal I ? m = (x1,…, xn, y, z) ? k[x1,…, xn, y, z] of the semigroup ring A has analytic spread ?(Im) at most three.  相似文献   

5.
Denote by span {f 1,f 2, …} the collection of all finite linear combinations of the functionsf 1,f 2, … over ?. The principal result of the paper is the following. Theorem (Full Müntz Theorem in Lp(A) for p ∈ (0, ∞) and for compact sets A ? [0, 1] with positive lower density at 0). Let A ? [0, 1] be a compact set with positive lower density at 0. Let p ∈ (0, ∞). Suppose (λ j ) j=1 is a sequence of distinct real numbers greater than ?(1/p). Then span {x λ1,x λ2,…} is dense in Lp(A) if and only if $\sum\limits_{j = 1}^\infty {\frac{{\lambda _j + \left( {1/p} \right)}}{{\left( {\lambda _j + \left( {1/p} \right)} \right)^2 + 1}} = \infty } $ . Moreover, if $\sum\limits_{j = 1}^\infty {\frac{{\lambda _j + \left( {1/p} \right)}}{{\left( {\lambda _j + \left( {1/p} \right)} \right)^2 + 1}} = \infty } $ , then every function from the Lp(A) closure of {x λ1,x λ2,…} can be represented as an analytic function on {z ∈ ? \ (?∞,0] : |z| < rA} restricted to A ∩ (0, rA) where $r_A : = \sup \left\{ {y \in \mathbb{R}:\backslash ( - \infty ,0]:\left| z \right|< r_A } \right\}$ (m(·) denotes the one-dimensional Lebesgue measure). This improves and extends earlier results of Müntz, Szász, Clarkson, Erdös, P. Borwein, Erdélyi, and Operstein. Related issues about the denseness of {x λ1,x λ2,…} are also considered.  相似文献   

6.
Let R be a noncommutative prime ring of characteristic different from 2, U the Utumi quotient ring of R, C the extended centroid of R, and L a noncentral Lie ideal of R. If F and G are generalized derivations of R and k ≥1 a fixed integer such that [F(x), x] k x ? x[G(x), x] k = 0 for any xL, then one of the following holds:
  1. either there exists an aU and an αC such that F(x) = xa and G(x) = (a + α)x for all xR
  2. or R satisfies the standard identity s 4(x 1, …, x 4) and one of the following conclusions occurs
  1. there exist a, b, c, qU, such that a ?b + c ?qC and F(x) = ax + xb, G(x) = cx + xq for all xR
  2. there exist a, b, cU and a derivation d of U such that F(x) = ax+d(x) andG(x) = bx+xc?d(x) for all xR, with a + b ? cC.
  相似文献   

7.
A tree is called starlike if it has exactly one vertex of degree greater than two. In [4] it was proved that two starlike treesG andH are cospectral if and only if they are isomorphic. We prove here that there exist no two non-isomorphic Laplacian cospectral starlike trees. Further, letG be a simple graph of ordern with vertex setV(G)={1,2, …,n} and letH={H 1,H 2, ...H n } be a family of rooted graphs. According to [2], the rooted productG(H) is the graph obtained by identifying the root ofH i with thei-th vertex ofG. In particular, ifH is the family of the paths $P_{k_1 } , P_{k_2 } , ..., P_{k_n } $ with the rooted vertices of degree one, in this paper the corresponding graphG(H) is called the sunlike graph and is denoted byG(k 1,k 2, …,k n ). For any (x 1,x 2, …,x n ) ∈I * n , whereI *={0,1}, letG(x 1,x 2, …,x n ) be the subgraph ofG which is obtained by deleting the verticesi 1, i2, …,i j ∈ V(G) (0≤j≤n), provided that $x_{i_1 } = x_{i_2 } = ... = x_{i_j } = 0$ . LetG(x 1,x 2,…, x n] be the characteristic polynomial ofG(x 1,x 2,…, x n ), understanding thatG[0, 0, …, 0] ≡ 1. We prove that $$G[k_1 , k_2 ,..., k_n ] = \Sigma _{x \in ^{I_ * ^n } } \left[ {\Pi _{i = 1}^n P_{k_i + x_i - 2} (\lambda )} \right]( - 1)^{n - (\mathop \Sigma \limits_{i = 1}^n x_i )} G[x_1 , x_2 , ..., x_n ]$$ where x=(x 1,x 2,…,x n );G[k 1,k 2,…,k n ] andP n (γ) denote the characteristic polynomial ofG(k 1,k 2,…,k n ) andP n , respectively. Besides, ifG is a graph with λ1(G)≥1 we show that λ1(G)≤λ1(G(k 1,k 2, ...,k n )) < for all positive integersk 1,k 2,…,k n , where λ1 denotes the largest eigenvalue.  相似文献   

8.
Lek k be an infinite field and suppose m.i. and n are positive integers such that t m We study the subset of k[x 1,x 2, … xm ] which consists of 0 and the homogeneous members t of f of k[x 1,x 2, … xm ] of fixed degree n such that there exists homogeneous F 1, F 2, … Ft in k[x 1,x 2, … xm ] of degree one and homogenous g 1 g 2, …gt , in k[x 1,x 2, … xm ] such that f(x) = F 1(x)g 1(x) + F 2(x)g 2(x) + … + F t (x)g t (x) for each x in k m. In case k is algebrarcally closed we are able to prove that this set is an algebraic variety. Consequently. if k is also of characteristic 0 then we are able to prove that certain collections of symmetric k-valued multilinear functions are algebraic varieties.  相似文献   

9.
The nim-like game 〈n, f; X, Y〉 is defined by an integer n ≥ 2 a constraint function f, and two players and X and Y. Players X and Y alternate taking coins from a pile of n coins, with X taking the first turn. The winner is the one who takes the last coin. On the kth turn, a player may remove tk coins, where 1 ≤ t1n ? 1 and 1 ≤ tk ≤ max{1, f(tk?1) for k > 1. Let the set Sf = {1} ∪ {n| there is a winning strategy for Y in the nim-like game 〈n, f; X, Y〉}. In this paper, an algorithm is provided to construct the set Sf = {a1, a2,…} in an increasing sequence when the function f(x) is monotonic. We show that if the function f(x) is linear, then there exist integers n0 and m such that an+1 = an + an?m for n > n0 and we give upper and lower bounds for m (dependent on f. A duality is established between the asymptotic order of the sequence of elements in Sf and the degree of the function f(x). A necessary and sufficient condition for the sequence {a0, a1, a2,…} of elements in Sf to satisfy a regular recurrence relation is described as well.  相似文献   

10.
Let R be a non-commutative prime ring of characteristic different from 2, U its right Utumi quotient ring, C its extended centroid, F a generalized derivation on R, and f(x 1,…, x n ) a noncentral multilinear polynomial over C. If there exists a ∈ R such that, for all r 1,…, r n  ∈ R, a[F 2(f(r 1,…, r n )), f(r 1,…, r n )] = 0, then one of the following statements hold: 1. a = 0;

2. There exists λ ∈C such that F(x) = λx, for all x ∈ R;

3. There exists c ∈ U such that F(x) = cx, for all x ∈ R, with c 2 ∈ C;

4. There exists c ∈ U such that F(x) = xc, for all x ∈ R, with c 2 ∈ C.

  相似文献   

11.
Letk n be the smallest constant such that for anyn-dimensional normed spaceX and any invertible linear operatorTL(X) we have $|\det (T)| \cdot ||T^{ - 1} || \le k_n |||T|^{n - 1} $ . LetA + be the Banach space of all analytic functionsf(z)=Σ k≥0 a kzk on the unit diskD with absolutely convergent Taylor series, and let ‖fA + k≥0κ|; define ? n on $\overline D ^n $ by $ \begin{array}{l} \varphi _n \left( {\lambda _1 ,...,\lambda _n } \right) \\ = inf\left\{ {\left\| f \right\|_{A + } - \left| {f\left( 0 \right)} \right|; f\left( z \right) = g\left( z \right)\prod\limits_{i = 1}^n {\left( {\lambda _1 - z} \right), } g \in A_ + , g\left( 0 \right) = 1 } \right\} \\ \end{array} $ . We show thatk n=sup {? n1,…, λ n ); (λ1,…, λ n )∈ $\overline D ^n $ }. Moreover, ifS is the left shift operator on the space ?∞:S(x 0,x 1, …,x p, …)=(x 1,…,x p,…) and if Jn(S) denotes the set of allS-invariantn-dimensional subspaces of ?∞ on whichS is invertible, we have $k_n = \sup \{ |\det (S|_E )|||(S|_E )^{ - 1} ||E \in J_n (S)\} $ . J. J. Schäffer (1970) proved thatk n≤√en and conjectured thatk n=2, forn≥2. In factk 3>2 and using the preceding results, we show that, up to a logarithmic factor,k n is of the order of √n whenn→+∞.  相似文献   

12.
Let A be a non-empty set and m be a positive integer. Let ≡ be the equivalence relation defined on A m such that (x 1, …, x m ) ≡ (y 1, …, y m ) if there exists a permutation σ on {1, …, m} such that y σ(i) = x i for all i. Let A (m) denote the set of all equivalence classes determined by ≡. Two elements X and Y in A (m) are said to be adjacent if (x 1, …, x m?1, a) ∈ X and (x 1, …, x m?1, b) ∈ Y for some x 1, …, x m?1A and some distinct elements a, bA. We study the structure of functions from A (m) to B (n) that send adjacent elements to adjacent elements when A has at least n + 2 elements and its application to linear preservers of non-zero decomposable symmetric tensors.  相似文献   

13.
We propose a conjecture: for each integer k ≥ 2, there exists N(k) such that if G is a graph of order nN(k) and d(x) + d(y) ≥ n + 2k - 2 for each pair of non-adjacent vertices x and y of G, then for any k independent edges e1, …, ek of G, there exist k vertex-disjoint cycles C1, …, Ck in G such that eiE(Ci) for all i ∈ {1, …, k} and V(C1 ∪ ···∪ Ck) = V(G). If this conjecture is true, the condition on the degrees of G is sharp. We prove this conjecture for the case k = 2 in the paper. © 1997 John Wiley & Sons, Inc. J Graph Theory 26: 105–109, 1997  相似文献   

14.
Summary. Let F, Y \Phi, \Psi be strictly monotonic continuous functions, F,G be positive functions on an interval I and let n ? \Bbb N \{1} n \in {\Bbb N} \setminus \{1\} . The functional equation¶¶F-1 ([(?i=1nF(xi)F(xi))/(?i=1n F(xi)]) Y-1 ([(?i=1nY(xi)G(xi))/(?i=1n G(xi))])  (x1,?,xn ? I) \Phi^{-1}\,\left({\sum\limits_{i=1}^{n}\Phi(x_{i})F(x_{i})\over\sum\limits_{i=1}^{n} F(x_{i}}\right) \Psi^{-1}\,\left({\sum\limits_{i=1}^{n}\Psi(x_{i})G(x_{i})\over\sum\limits_{i=1}^{n} G(x_{i})}\right)\,\,(x_{1},\ldots,x_{n} \in I) ¶was solved by Bajraktarevi' [3] for a fixed n 3 3 n\ge 3 . Assuming that the functions involved are twice differentiable he proved that the above functional equation holds if and only if¶¶Y(x) = [(aF(x) + b)/(cF(x) + d)],       G(x) = kF(x)(cF(x) + d) \Psi(x) = {a\Phi(x)\,+\,b\over c\Phi(x)\,+\,d},\qquad G(x) = kF(x)(c\Phi(x) + d) ¶where a,b,c,d,k are arbitrary constants with k(c2+d2)(ad-bc) 1 0 k(c^2+d^2)(ad-bc)\ne 0 . Supposing the functional equation for all n = 2,3,... n = 2,3,\dots Aczél and Daróczy [2] obtained the same result without differentiability conditions.¶The case of fixed n = 2 is, as in many similar problems, much more difficult and allows considerably more solutions. Here we assume only that the same functional equation is satisfied for n = 2 and solve it under the supposition that the functions involved are six times differentiable. Our main tool is the deduction of a sixth order differential equation for the function j = F°Y-1 \varphi = \Phi\circ\Psi^{-1} . We get 32 new families of solutions.  相似文献   

15.
Given a simple plane graph G, an edge‐face k‐coloring of G is a function ? : E(G) ∪ F(G) → {1,…,k} such that, for any two adjacent or incident elements a, bE(G) ∪ F(G), ?(a) ≠ ?(b). Let χe(G), χef(G), and Δ(G) denote the edge chromatic number, the edge‐face chromatic number, and the maximum degree of G, respectively. In this paper, we prove that χef(G) = χe(G) = Δ(G) for any 2‐connected simple plane graph G with Δ (G) ≥ 24. © 2005 Wiley Periodicals, Inc. J Graph Theory  相似文献   

16.
Summary. We investigate the bounded solutions j:[0,1]? X \varphi:[0,1]\to X of the system of functional equations¶¶j(fk(x))=Fk(j(x)),    k=0,?,n-1,x ? [0,1] \varphi(f_k(x))=F_k(\varphi(x)),\;\;k=0,\ldots,n-1,x\in[0,1] ,(*)¶where X is a complete metric space, f0,?,fn-1:[0,1]?[0,1] f_0,\ldots,f_{n-1}:[0,1]\to[0,1] and F0,...,Fn-1:X? X F_0,...,F_{n-1}:X\to X are continuous functions fulfilling the boundary conditions f0(0) = 0, fn-1(1) = 1, fk+1(0) = fk(1), F0(a) = a,Fn-1(b) = b,Fk+1(a) = Fk(b), k = 0,?,n-2 f_{0}(0) = 0, f_{n-1}(1) = 1, f_{k+1}(0) = f_{k}(1), F_{0}(a) = a,F_{n-1}(b) = b,F_{k+1}(a) = F_{k}(b),\,k = 0,\ldots,n-2 , for some a,b ? X a,b\in X . We give assumptions on the functions fk and Fk which imply the existence, uniqueness and continuity of bounded solutions of the system (*). In the case X = \Bbb C X= \Bbb C we consider some particular systems (*) of which the solutions determine some peculiar curves generating some fractals. If X is a closed interval we give a collection of conditions which imply respectively the existence of homeomorphic solutions, singular solutions and a.e. nondifferentiable solutions of (*).  相似文献   

17.
Let X, Y be two linear spaces over the field ? of rationals and let D ≠ ? be a (?—convex subset of X. We show that every function ?: D → Y satisfying the functional equation $${\mathop\sum^{n+1}\limits_{j=0}}(-1)^{n+1-j}\Bigg(^{n+1}_{j}\Bigg)f\Bigg((1-{j\over {n+1}})x+{j\over{n+1}}y\Bigg)=0,\ \ \ x,y\in\ D,$$ admits an extension to a function F: X → Y of the form $$F(x)=A^o+A^1(x)+\cdot\cdot\cdot+A^n(x),\ \ \ x\in\ X,$$ where A o ∈ Y, Ak(x) ? Ak(x,…,x), x ∈ X, and the maps A k: X k → Y are k—additive and symmetric, k ∈ {1,…, n}. Uniqueness of the extension is also discussed.  相似文献   

18.
It is shown that for m = 2d ? 1, 2d, 2d + 1, and d ≥ 1, the set {1, 2,…, 2m + 2}, ? {2,k} can be partitioned into differences d,d + 1,…,d + m ? 1 whenever (m,k) ≡ (0,0), (1,d + 1), (2, 1), (3,d) (mod (4,2)) and (d,m,k) ≠ (1,1,3), (2,3,7) (where (x,y) ≡ (u,ν) mod (m,n) iff xu (mod m) and yν (mod n)). It is also shown that if m ≥ 2d ? 1 and m ? [2d + 2, 8d ? 5], then the set {1, 2, …, 2m + 1} ? {k} can be partitioned into differences d,d + 1,…,d + m ? 1 whenever (m,k) ≡ (0, 1), (1,d), (2,0), (3,d + 1) mod (4,2). Finally, for d = 4 we obtain a complete result for when {1,…,2m + 1} ? {k} can be partitioned into differences 4,5,…,m + 3. © 2004 Wiley Periodicals, Inc.  相似文献   

19.
The functional equation $$f(x)={1\over 2}\int^{x+1}_{x-1}f(t)\ dt\ \ \ {\rm for}\ \ \ x\ \in\ {\rm R}$$ has the linear functions ?(x) = a + bx (a, b ∈ ?) as trivial solutions. It is shown that there are two kinds of nontrivial solutions, (i) ?(x) = eλi x (i = 1, 2, …), where the λi∈ ? are the fixed points of the map z ? sinh z, and (ii) C-solutions ? for which the values in the interval [?1,1] can be prescribed arbitrarily, but with the provision that ?(j)(? 1) = ?(j)(0) = ?(j)(1) = 0 for all j = 0, 1, 2 …  相似文献   

20.
Quasi-Newton algorithms minimize a functionF(x),xR n, searching at any iterationk along the directions k=?H kgk, whereg k=?F(x k) andH k approximates in some sense the inverse Hessian ofF(x) atx k. When the matrixH is updated according to the formulas in Broyden's family and when an exact line search is performed at any iteration, a compact algorithm (free from the Broyden's family parameter) can be conceived in terms of the followingn ×n matrix: $$H{_R} = H - Hgg{^T} H/g{^T} Hg,$$ which can be viewed as an approximating reduced inverse Hessian. In this paper, a new algorithm is proposed which uses at any iteration an (n?1)×(n?1) matrixK related toH R by $$H_R = Q\left[ {\begin{array}{*{20}c} 0 & 0 \\ 0 & K \\ \end{array} } \right]Q$$ whereQ is a suitable orthogonaln×n matrix. The updating formula in terms of the matrixK incorporated in this algorithm is only moderately more complicated than the standard updating formulas for variable-metric methods, but, at the same time, it updates at any iteration a positive definite matrixK, instead of a singular matrixH R. Other than the compactness with respect to the algorithms with updating formulas in Broyden's class, a further noticeable feature of the reduced Hessian algorithm is that the downhill condition can be stated in a simple way, and thus efficient line searches may be implemented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号