首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ultrasound at 20 kHz was applied to a cross-flow ultrafiltration system with gamma-alumina membranes in the presence of colloidal silica particles to systematically investigate how ultrasonic factors affect membrane cleaning. Based on imaging of the ultrasonic cavitation region, optimal cleaning occurred when the membrane was outside but close to the cavitation region. Increasing the filtration pressure increased the compressive forces driving cavitation collapse and resulted in fewer cavitation bubbles absorbing and scattering sound waves and increasing sound wave penetration. However, an increased filtration pressure also resulted in greater permeation drag, and subsequently less improvement in permeate flux compared to low filtration pressure. Finally, pulsed ultrasound with short pulse intervals resulted in permeate flux improvement close to that of continuous sonication.  相似文献   

2.
A. Grauel 《Physica A》1980,103(3):468-520
We discuss a closed system of field equations for a semipermeable membrane which has particle and heat exchange with its surroundings. In this case we consider a surface with an arbitrary shape for specific quantities and mechanical properties. A representation of the constitutive equations follows from the principle of material objectivity in space as well as on surfaces. The constitutive equations can be restricted by an entropy principle. We present both the Gibbs equation and the entropy flux. Furthermore, we obtain the surface stress and the chemical potential in terms of the specific free energy of the membrane. Both the heat flux and the particle flux normal to the membrane depend on the mean curvature and the friction between the particle across the membrane. The interaction tangential to the interface is dependent up on gradients of the surface stress as well as the chemical potential of the interface.  相似文献   

3.
Ultrasound based on-line cleaning for membrane filtration of industrial wastewater was studied. An ultrasonic transducer was assembled in the membrane module in order to get an efficient cleaning of membranes in fouling conditions. The focus of the studies was on the effects of the ultrasound propagation direction and frequency as well as the transmembrane pressure. The more open the membrane was the easier the membrane became plugged by wastewater colloids, when the ultrasound propagation direction was from the feed flow side of the membrane. If the membrane was tight enough, the ultrasound irradiated from the feed side of the membrane increased the flux significantly. However, in the circumstances studied, the power intensity needed during filtration was so high that the membranes eroded gradually at some spots of the membrane surface. It was discovered that the ultrasonic field produced by the used transducers was uneven in pressurised conditions. On the other hand, the ultrasound treatment at atmospheric pressure during an intermission pause in filtration turned out to be an efficient and, at the same time, a gentle method in membrane cleaning. The input power of 120 W (power intensity of 1.1 W/cm2) for a few seconds was sufficient for cleaning. The flux improvement was significant when using a frequency of 27 kHz but only minor when using 200 kHz.  相似文献   

4.
Commercial nanofiltration (NF) thin-film composite (TFC) membranes were treated by low-pressure NH3 plasma, and the effects of the plasma treatment were investigated in terms of the membrane hydrophilicity, pure water flux, salt rejection, protein adsorption, and humic acid fouling. Experimental results indicated that the membrane surface hydrophilicity was increased by the plasma treatment, and changes in the hydrophilicity as well as membrane performance including permeate flux and fouling varied with the original membrane characteristics (e.g., roughness and hydrophilicity). Water flux of plasma treated membranes was the highest with 10 min and 90 W of plasma treatment, and salt rejection was mainly affected by the intensity of the plasma power. Results of bovine serum albumin (BSA) adsorption demonstrated that the protein adsorption decreased with increasing plasma treatment time. The plasma treatment that resulted in more negatively charged surfaces could also better prevent Aldrich humic acid (AHA) attachment on the membrane surface.  相似文献   

5.
In this work the effect of microwave irradiation on morphology and performance of polyethersulfone (PES) membranes was investigated. The membranes were prepared with 20 wt.% of PES by phase inversion method. N,N-dimethylformamide (DMF) and mixture of water and ethyl alcohol (90/10 vol.%) were employed as solvent and coagulant respectively. Polyvinylpirrolidone (PVP) with the concentration of 2 wt.% was selected as pore former. The effects of irradiation time (10, 30, 60, 90, 120 s) and microwave power (180, 360, 720 and 900 W) on structure and performance of membranes were studied. Increasing the irradiation time and power caused variation in permeate flux and ion rejection. Moreover, the effects of annealing processes (60, 70, 80 °C) were studied. Transmembrane pressure was selected around 1.5 MPa for all experiments. Scanning electron microscope (SEM) and atomic force microscope (AFM) were employed to describe the surface morphology of the prepared membranes. The effect of microwave irradiation time in different power revealed alterations in membrane surface morphology and AFM images represented that surface parameters (such as surface roughness) have been changed. The membrane exhibited moderate rejection (47%) and low permeate flux (4.5 kg/m2 h) at 80 °C for NaCl solution. The SEM images indicate that the dense skin layer is formed at 80 °C annealing.  相似文献   

6.
In this paper, four nanofiltration membranes, viz., (1) coating of N,O-carboxymethyl chitosan (NOCC) on polyethersulfone ultrafiltration (PES UF) substrate membrane; (2) chitosan and acrylonitrile butadiene styrene (ABS) in the blend ratio of 0:100 (ABS); (3) diethylenetriamine pentaacetic acid coating via casting method on PES UF substrate membrane (DC50); and (4) NOCC and cellulose acetate (CA) polymer blend solution (0.4?wt%) coated on a glass plate (NOCC?CCA), were selected from our previous work. By using these membranes, separation behaviour of mercury and chromium ions was studied at different operating conditions from their salt solutions. From the experimental data, it is evident that ABS membrane gave highest observed solute rejection (92.88 and 88.67?% for 10?ppm feed concentration of mercury sulphate?Cwater system and chromium sulphate?Cwater system, respectively) and NOCC?CCA membrane gave highest permeate volume flux. But from the rejection as well as permeate volume flux point of view, NOCC?CPES membrane is considered to be the best choice among all the membranes.  相似文献   

7.
In this article, we describe the synthesis of new and ion-selective nanofiltration (NF) membranes using polyvinylidene fluoride (PVDF) nanofibers and hyperbranched polyethylenimine (PEI) as building blocks. These new nanofibrous composite (NFC) membranes consist of crosslinked hyperbranched PEI networks supported by PVDF nanofibrous scaffolds that are electrospun onto commercial PVDF microfiltration (MF) membranes. A major objective of our study was to fabricate positively charged NF membranes that can be operated at low pressure with high water flux and improved rejection for monovalent cations. To achieve this, we investigated the effects of crosslinker chemistry on membrane properties (morphology, composition, hydrophobicity, and zeta potential) and membrane performance (salt rejection and permeate flux) in aqueous solutions (2,000?mg/L) of four salts (NaCl, MgCl2, Na2SO4, and MgSO4) at pH 4, 6, and 8. We found that an NFC?CPVDF membrane with a network of PEI macromolecules crosslinked with trimesoyl chloride has a high water flux (~30?L?m?2?h?1) and high rejections for MgCl2 (~88 %) and NaCl (~65 %) at pH 6 using a pressure of 7?bar. The overall results of our study suggest that PVDF nanofibers and hyperbranched PEI are promising building blocks for the fabrication of high performance NF membranes for water purification.  相似文献   

8.
The electrohydrodynamic Kelvin-Helmholtz instability of the plane interface between two uniform, superposed viscous and streaming dielectric fluids permeated with suspended particles through porous medium is considered under the influence of a tangential electric field. In the absence of surface tension, it is found that perturbations transverse to the direction of streaming are unaffected by the presence of both streaming and the tangential electric field, if perturbations in the direction of streaming are ignored. For perturbations in all other directions there exists instability for a certain wavenumber range. In the presence of surface tension, it is found that the instability of this system is suppressed by the presence of the tangential electric field. Both the tangential electric field and the surface tension have stabilizing effects and they are able to suppress Kelvin-Helmholtz instability for small wavelength perturbations. The medium porosity reduces the stability range given in terms of a difference in streaming velocities and the electric field effect, while the suspended particles do not affect the above results.  相似文献   

9.
单层石墨烯凭借超薄的厚度和优异的力学化学防污性能,成为新一代纳滤膜材料的最佳选择之一.本文采用经典分子动力学方法,研究了氢化多孔石墨烯反渗透膜对盐水的反渗透特性.结果表明,水渗透量会随着驱动力、孔径和温度的增加而增加;而孔径大于水合半径的条件下,盐离子截留率会随驱动力和温度的增加而降低.当反渗透膜和盐水存在切向运动时,随着切向速度的增加可以有效提高盐离子截留率和减弱浓差极化现象,但也在一定程度上牺牲了水通量.通过分析水流沿渗透方向的能障分布、水分子的氢键分布和离子水合状态,解释了各参数变化对盐水在氢化多孔石墨烯中反渗透特性的影响机理.研究结果将提供基于单层多孔石墨烯反渗透特性的理论认识,并将为纳米级反渗透膜的设计提供帮助.  相似文献   

10.
A laboratory filtration plant for drinking water treatment is constructed to study the conditions for purely mechanical in situ cleaning of fouled polymeric membranes by the application of ultrasound. The filtration is done by suction of water with defined constant contamination through a membrane module, a stack of five pairs of flat-sheet ultrafiltration membranes. The short cleaning cycle to remove the cake layer from the membranes includes backwashing, the application of ultrasound and air flushing. A special geometry for sound irradiation of the membranes parallel to their surfaces is chosen. Two frequencies, 35 kHz and 130 kHz, and different driving powers are tested for their cleaning effectiveness. No cleaning is found for 35 kHz, whereas good cleaning results are obtained for 130 kHz, with an optimum cleaning effectiveness at moderate driving powers. Acoustic and optic measurements in space and time as well as analytical considerations and numerical calculations reveal the reasons and confirm the experimental results. The sound field is measured in high resolution and bubble structures are high-speed imaged on their nucleation sites as well as during their cleaning work at the membrane surface. The microscopic inspection of the membrane surface after cleaning shows distinct cleaning types in the cake layer that are related to specific bubble behaviour on the membrane. The membrane integrity and permeate quality are checked on-line by particle counting and turbidity measurement of the permeate. No signs of membrane damage or irreversible membrane degradation in permeability are detected and an excellent water permeate quality is retained.  相似文献   

11.
Air Gap Membrane distillation (AGMD) is a thermally driven separation process capable of treating challenging water types, but its low productivity is a major drawback. Membrane fouling is a common problem in many membrane treatment systems, which exacerbates AGMD’s low overall productivity. In this study, we investigated the direct application of low-power ultrasound (8–23 W), as an in-line cleaning and performance boosting technique for AGMD. Two different highly saline feedwaters, namely natural groundwater (3970 μS/cm) and RO reject stream water (12760 μS/cm) were treated using Polytetrafluoroethylene (PTFE) and polyvinylidene fluoride (PVDF) membranes. Theoretical calculations and experimental investigations are presented, showing that the applied ultrasonic power range only produced acoustic streaming effects that enhanced cleaning and mass transfer. Attenuated Total Reflection Fourier-Transform Infrared Spectroscopy (ATR FT-IR) analysis showed that ultrasound was capable of effectively removing silica and calcium scaling. Ultrasound application on a fouled membrane resulted in a 100% increase in the permeate flux. Cleaning effects accounted for around 30–50% of this increase and the remainder was attributed to mass transfer improvements. Contaminant rejection percentages were consistently high for all treatments (>99%), indicating that ultrasound did not deteriorate the membrane structure. Scanning Electron Microscopy (SEM) analysis of the membrane surface was used to confirm this observation. The images of the membrane surface demonstrated that ultrasound successfully cleaned the previously fouled membrane, with no signs of structural damage. The results of this study highlight the efficient and effective application of direct low power ultrasound for improving AGMD performance.  相似文献   

12.
Poly (vinylidene fluoride) (PVDF) is an important membrane forming material for water treatment. Earlier works have shown that major morphological changes can be achieved when PVDF is dissolved under different conditions with practical applications in membrane distillation and protein attachment. However, no previous report has discussed the effects of dissolution conditions on the performance of PVDF under ultrafiltration, which is one of the most important applications of the polymer. In this work, four different PVDF ultrafiltration membranes were produced from dopes dissolved either by stirring at 24 °C, 90 °C, 120 °C or by sonication. It is shown that dope sonication results in membrane with enhanced thermal and mechanical stability, improved permeate flux during oil emulsion filtration and high flux recovery of ∼63% after cleaning. As a comparison, flux recovery of only ∼26% was obtained for the membrane produced from dope dissolved at 24 °C. The outstanding performance of the dope-sonicated membrane was linked to its slightly lower porosity, narrow distribution of small pores and relatively smooth skin layer. Performance parameters for all membranes showed good correlation to porosity suggesting a tool for membrane design achievable by simple variation in the mode of polymer dissolution. The polymer dissolution effect was related to the degree of unfolding of the polymer molecular chains and their entanglements.  相似文献   

13.
膜蒸馏过程中的膜内冷凝现象是该技术在实际应用中不可忽视的一个重要问题。本文以疏水化改性处理的纤维膜作为研究对象,采用实验现象观察和理论分析并用的方法,研究了纤维膜在膜蒸馏过程发生膜内毛细管冷凝的影响因素包括膜蒸馏模块结构、蒸馏膜参数、热力学参数,探讨了毛细冷凝对膜蒸馏的影响。实验表明毛细冷凝可以在膜蒸馏过程中发生,但并不终止膜蒸馏过程,而是减小了传质系数。毛细冷凝容易发生在蒸馏膜厚度小、热料液温度高、冷却液温度低或气隙小的情况下。实验结果和理论分析表明,传质系数实验值的降低可作为膜孔内发生毛细冷凝的判定依据。通过简化蒸气在疏水多孔介质的传递过程,建立了膜蒸馏过程发生毛细冷凝时的传质平衡模型。  相似文献   

14.
The physical nature of the macroturbulence in vortex matter in YBCO superconductors is investigated by means of a magneto-optic study of the instability in a single crystal prepared especially for this purpose. The instability develops near those sample edges where the oppositely directed flow of vortices and antivortices, guided by twin boundaries, is characterized by the discontinuity of the tangential component of the hydrodynamic velocity. This fact indicates that the macroturbulence is analogous to the instability of fluid flow at a surface of a tangential velocity discontinuity in classical hydrodynamics and is related to the anisotropic flux motion in the superconductor.  相似文献   

15.
A mathematical model for transport and adsorption of chloride and sulphate ions through PVD membrane is presented at two pressures; 8 and 15 bar and 40 °C. The PVD membrane is negatively charged. Saturated brine containing NaCl with the concentration higher than 97% was challenged with the membrane as the feed. Other available ions in the solution were Fe2+, Ca2+, Mg2+ and SO42−. The screen effect of the cations on the membrane surface charge facilitates the passage of the anions through the membrane without any noticeable electrostatic repulsion. Hermia blocking laws combined with experimental results indicate that the internal pore closure of the membrane by anions and cake deposition on the membrane surface by cations are the separation mechanisms. The transmission of anions through the membrane may be predicted with a simple transport equation (convection and diffusion) combined with an adsorption isotherm. Both Langmuir and Freundlich adsorption isotherms were employed due to the simplicity and validity in liquid systems. The isotherm’s parameters were determined at 10 bar during the unsteady state filtration. Under this condition, the permeate flux and concentration varied sharply due to adsorption. Finally, the model was compared with the experimental rejection data. An acceptable agreement around 95% at 8 bar and 92% at 15 bar was observed between theoretical model and experimental data.  相似文献   

16.
本文利用非平衡热力学理论分析了微滤中的透膜热质耦合传递现象,建立了相应的物理数学模型,在此基础上,探讨了各种因素对透膜通量及热流束的影响,结果表明:质量流与膜两侧的压差呈正比关系,而与膜温度呈指数关系;热流不仅与膜温度有关,还与膜两侧的压差和温差有关;在膜温度一定时,热流与膜两侧的压差和温差均呈线性关系。  相似文献   

17.
使用热侵蚀沉积粒子程序(HEDPIC)模拟了由小块沿环向表面倾斜的瓦片组成类 ITER 偏滤器的极向 缝隙附近瓦片表面的热流密度分布,研究了不同倾斜高度对热流密度分布的影响。研究结果表明,当瓦片设置成 合适的倾斜角度时,瓦片上表面靠近缝隙附近的电子热通量为零;离子热流密度小于上表面远离缝隙的热流密度, 棱边处热流密度过高的问题得到解决。   相似文献   

18.
旋流燃烧室内颗粒运动的数值模拟   总被引:3,自引:0,他引:3  
本文应用流体相湍流脉动速度大小和方向均具有随机性的颗粒相随机轨道模型,对有直流一次风和旋流二次风的旋流燃烧室内的颗粒运动进行了数值模拟。得到的颗粒相轴向总质量流通量、轴向与切向速度分布与实验测量数据相符合,并比 Gosman 颗粒随机轨道模型的模拟结果有一定的改进。  相似文献   

19.
单轴晶体的光程差和Lyot型滤光器的视场   总被引:1,自引:0,他引:1       下载免费PDF全文
 建立了以光线入射方向和晶体光轴方向为基准的入射坐标系,利用波法线反曲面方程和电磁场在晶体折射界面处切向分量连续性的边界条件,得到了晶体中波法线方向、射线方向、波法线折射率和射线折射率的表达式。从非常光的射线方向和射线折射率出发,得到了在任意的晶体光轴方向和入射角条件下,光通过单轴晶体后寻常光、非常光的光程差表达式。对Lyot型滤光单元的透射率和视场进行了计算分析后发现,滤光单元的透射率随光线入射角的变化呈现一定的周期性,视场随光轴倾角的增大而减小。得出了透射率和视场随光轴倾角(光轴与晶体表面的夹角)和光线入射角(光线在晶体表面的入射角)的变化规律。讨论了通过改变晶体倾角实现滤光器调谐和补偿晶体厚度加工误差等技术问题。  相似文献   

20.
We examine frictional shakedown of a three dimensional elastic rolling contact. Slight oscillatory rolling of one contacting body varies the normal pressure distribution. In turn this causes incremental sliding processes and a macroscopic rigid body motion. We consider two settings: tangential force and rolling direction aligned parallel and perpendicular to each other. In both cases, the slip ceases after the first few periods and a safe shakedown occurs if the oscillation is sufficiently small. Otherwise ratcheting occurs and the accumulated slip leads to a continuing rigid body motion.Numerical simulations with Kalker’s and Vollebregt’s software CONTACT show that the rolling direction leads to differences in the contact region and the traction distribution. Using the method of dimensionality reduction we derive the analytical shakedown limits for the tangential load and the oscillation amplitude. The results show strong agreement with experimental data and allow the accurate prediction of the shakedown displacement and the maximum tangential load capacity in the shakedown state. It shows that a perpendicular alignment of force and rolling direction increases the final displacement in case of shakedown as well as the incremental shift in case of ratcheting.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号