首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Abstract  

Reaction of the [Me4N]2[Cd(SPh-4-Me)4] with two equivalents of [M(PPh3)2NO3] afforded the neutral linear trinuclear complexes [Cd(μ-SPh-4-Me)4{M(PPh3)2}2] (M = Cu 1, Ag 2) in which two [M(PPh3)2]+ fragments chelate with the opposite edges of a tetrahedral [Cd(SPh-4-Me)4]2− moiety via the sulfur atoms of the Me-4-PhS species. Treatment of [Sn(SPh)4] with two equivalents of [Ag(PPh3)2NO3] gave the neutral linear trinuclear complex [Sn(μ-SPh)6(AgPPh3)2] (3) that is composed of a central distorted SnS6 octahedron sharing two opposite planes with two slightly distorted AgS3P tetrahedrons. Complexes 2 and 3 are air and optically stable. Their nonlinear optical absorption and refraction were investigated under the same conditions. The nonlinear optical absorption and refraction of complex 2 were determined to be α 2 = 3.11 × 10−11 m/W and n 2 = 4.15 × 10−12 esu, respectively. The nonlinear optical absorption and refraction of complex 3 were determined to be α 2 = 8.36 × 10−11 m/W and n 2 = 1.47 × 10−11 esu, respectively.  相似文献   

2.
Reaction of silver(I) halides with PPh3 in acetonitrile and then with pyridine-2-thione (pySH) chloroform (1:1:1 molar ratio) has yielded sulfur bridged dimers of general formula, [Ag2X2(μ-S-pySH)2(PPh3)2] (X = Cl, 1, Br, 2). Both these complexes have been characterized using analytical data, NMR spectroscopy and single crystal X-crystallography. The central Ag2S2 cores form parallelograms with unequal Ag–S bond distances (2.5832(8), 2.7208(11) Å) in 1 and (2.6306(4), 2.6950(7) Å) in 2, respectively. The Ag?Ag contacts of compounds 1 and 2 are 3.8425(8) and 3.8211(4) Å, respectively. The angles around Ag (in the range 87.19(2)–121.71(2)° in 1 and 87.81(2)–121.53(2)° in 2) reveal highly distorted tetrahedral geometry. There are inter dimer π–π stacking interactions between pyridyl rings (inter ring distances of 3.498 and 3.510 Å in complexes 1 and 2, respectively). The solution state 31P NMR spectroscopy has shown the existence of both monomers and dimers. The studies reveal relatively weaker intramolecular –NH?Cl hydrogen bonding in case of AgCl vis-à-vis that in CuCl which favored both a monomer and a dimer with AgCl, and only a monomer with CuCl.  相似文献   

3.
New cluster complexes [W3S4(Acac)3(PPh3)3]PF6 · 0.5CHCl3 (Acac = CH3C(O)CHC(O)CH3) (I) and [W3S4(Hfac)3(PPh3)2Br] · 2CHCl3 (Hfac = CF3C(O)CHC(O)CF3) (II) were synthesized. Their molecular and crystal structures were determined by X-ray diffraction. The cis-cis type of coordination of acetylacetonate and hexafluoroacetylacetonate ligands in I and II, respectively, was established, and the PPh3 ligands were found in the trans-positions with respect to the “capping” sulfide ligand (μ3-S).  相似文献   

4.
A Cu(Ⅰ) complex with mix ligands [Cu(HIm)2(PPh3)2](BF4) was synthesized and characterized by elemental analysis, IRspectroscopy and X-ray diffraction crystallography. The crystal belongs to monoclinic system and P21/c space group, with cell parameters, a=1.2836(3)nm, b=1.5089(3)nm, c=2.0661(4)nm, α=90°, β=101.464(4)°,γ=90°, V=3.9219(13)nm3, Z=4 and Dc=1.374mg·m-3. The Cu(Ⅰ) is coordinated by two Patoms from triphenylphosphine and two Natoms from imidazole to form the distorted tetrahedral geometry.  相似文献   

5.
Reactions of platinum(II) chloro-phosphine complexes with Co33-CCCCCSiMe3)(μ-dppm)(CO)7 in the presence of NaOMe have given the compounds Pt{CCCC-μ3-C[Co3(μ-dppm)(CO)7]}2(dppe) (1), trans-Pt{CCCC-μ3-C[Co3(μ-dppm)(CO)7]}2(PEt3)2 (2) and trans-Pt{CCCC-μ3-C[Co3(μ-dppm) (CO)6(PPh3)]}2(PPh3)2 (3), each of which contains two Co3 clusters linked by C5 chains to the Pt centre. Electrochemical studies (CVs) show the presence of both oxidation and reduction processes, the latter probably occurring on the CCo3 cores. Ready reductive elimination of {Co3(μ-dppm)(CO)7}233-C10) occurs from 1 upon heating. The X-ray study of 3 was carried out using synchrotron radiation (Advanced Photon Source, Argonne, IL) to confirm its structure.  相似文献   

6.
A reaction of the dimer [Mn(CO)4(SPh)]2 with (PPh3)2Pt(C2Ph2) gave the heterometallic complex (CO)4Mn(μ-SPh)Pt(PPh3)2 (I) and its isomer (CO)3(PPh3)Mn(μ-SPh)Pt(PPh3)(CO) (II). A reaction of complex I with a diphosphine ligand (Dppm) yielded the heterometallic complex (CO)3Mn(μ-SPh)Pt(PPh3)(Dppm) (III). Complexes IIII were characterized by X-ray diffraction. In complex I, the single Mn-Pt bond (2.6946(3) ?) is supplemented with a thiolate bridge with the shortened Pt-S and Mn-S bonds (2.3129(5) and 2.2900(6) ?, respectively). Unlike complex I, in complex II, one phosphine group at the Pt atom is exchanged for one CO group at the Mn atom. The Mn-Pt bond (2.633(1) ?) and the thiolate bridge (Pt-S, 2.332(2) ?; Mn-S, 2.291(2) ?) are retained. In complex III, the Mn-Pt bond (2.623(1) ?) is supplemented with thiolate (Pt-S, 2.341(2) ?; Mn-S, 2.292(2) 0?) and Dppm bridges (Pt-P, 2.240(1)?; Mn-P, 2.245(2) ?). Apparently, the Pt atom in complexes IIII is attached to the formally double bond , as in Pt complexes with olefins.  相似文献   

7.
A new tetranuclear cyanide-bridged complex [PPh4]2[NiⅡ(CN)4CuⅠ(PPh3)2]2·2CH3OH ([PPh4]+ = tetraphenylphosphine cation, PPh3 = triphenylphosphine) 1 has been synthesized and characterized by IR spectroscopy, elemental analysis, electronic absorption spectra and single-crystal X-ray diffraction. This complex crystallizes in triclinic, space group Pí with a = 10.910(5), b = 15.777(7), c = 18.275(8), α = 68.752(12), β = 79.776(13), γ = 81.400(14)°, NiCuC65H50N4OP3, Mr = 1122.25, V = 2873(2)3 , Z = 2, Dc = 1.293 g/cm3, F(000) = 1156, μ = 0.826 mm-1, the final R = 0.0755 and wR = 0.2155 for 7324 observed reflections (I > 2σ(I)). The title compound exhibits a discrete square tetranuclear structure and a cubic order NLO property.  相似文献   

8.
Reaction of the metalloligand [Pt2(μ-S)2(PPh3)4] with 0.5 mol equivalents of durene-1,4-bis(mercuric acetate) [AcOHgC6Me4HgOAc] in methanol gives the polynuclear complex [{Pt2(μ-S)2(PPh3)4}2(μ-1,4-C6Me4Hg2)]2+, isolated as its and salts. Positive-ion ESI mass spectra indicate that [{Pt2(μ-S)2(PPh3)4}2(μ-1,4-C6Me4Hg2)]2+ undergoes fragmentation by successive loss of PPh3 ligands, while the ESI mass spectrum of the salt showed additional ions [Pt2(μ-S)2(PPh3)4(HgC6Me4HgPh)]+ and [Pt2(μ-S)2(PPh3)4HgPh]+ as a result of phenyl transfer from to Hg. A single-crystal X-ray structure determination on [{Pt2(μ-S)2(PPh3)4}2(μ-1,4-C6Me4Hg2)](BPh4)2 shows that the cation crystallises on a centre of symmetry, with structural features that are comparable to those of the previously characterised complex [Pt2(μ-S)2(PPh3)4HgPh]BPh4.  相似文献   

9.
It was determined by ESR spectroscopy that the UV irradiation of toluene solutions containing Hg[P(O)(OPri)2 and the complex (2-C60)Os(CO)(PPh3)2(CNBut) produces six stable regioisomeric adducts of phosphoryl radicals with complexes, which are not demetallated under UV irradiation and do not dimerize in the absence of UV irradiation. This is caused by the addition of the phosphoryl radicals to the carbon atoms of fullerene localized near the metal-containing moiety. The addition of the phosphoryl radicals to (2-C70)Os(CO)(PPh3)2(CNBut) gives rise to the formation of nine stable regioisomeric radical adducts. A comparison of the composition of regioisomers of the radical adducts of C70 with the phosphoryl radicals, which were formed directly from C70 and from the radical adducts of 2-C70)Os(CO)(PPh3)2(CNBut) by the demetallation of the latter, revealed an orienting effect of the osmium-containing moiety on the addition of the phosphoryl radicals to the fullerene complex.Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 9, pp. 1968–1972, September, 2004.  相似文献   

10.
A single crystal of [Pd(NH3)4]3[Ir(NO2)6]2·H2O double complex salt is studied by X-ray diffraction. Crystallographic characteristics are as follows: a = 21.0335(5) ?, b = 8.0592(2) ?, c = 21.3452(5) ?, β = 91.254(1)°, V = 3617.43(15) ?3, P21/c space group, Z = 4, d x = 2.714 g/cm3. Single-layer pseudohexagonal packing of complex anions is determined along the [−1 0 1] direction in the structure. Complex cations and crystallization water molecules are located between the mentioned layers.  相似文献   

11.
A reaction of Cp′Mo(CO)3Cl(Cp′ = MeC5H4) with (PPh3)2Pt(C2Ph2) gave the heterometallic cluster Cp′Mo(μ-CO)2(C2Ph2)Pt2(PPh3)2(CO)Cl (I) as the sole product. According to X-ray diffraction data, complex I contains single Pt-Mo bonds (2.7962(5) and 2.7699(5) ?) but no Pt-Pt bond (Pt…Pt 2.9746(3) ?). The coordinated diphenylacetylene molecule forms two Pt-C σ-bonds (2.054(6) and 2.083(5) ?) and a π-bond to the Mo atom (Mo-C 2.265(6) and 2.272(5) ?; C≡C 1.387(8) ?). Original Russian Text ? A.A. Pasynskii, I.V. Skabitskii, Yu.V. Torubaev, S.S. Shapovalo, 2009, published in Koordinatsionnaya Khimiya, 2009, Vol. 35, No. 6, pp. 410–413.  相似文献   

12.
The following ions [UO2(NO3)3], [UO2(ClO4)3], [UO2(CH3COO)3] were generated from respective salts (UO2(NO3)2, UO2(ClO4)3, UO2(CH3COO)2) by laser desorption/ionization (LDI). Collision induced dissociation of the ions has led, among others, to the formation of UO4 ion (m/z 302). The undertaken quantum mechanical calculations showed this ion is most likely to possess square planar geometry as suggested by MP2 results or strongly deformed geometry in between tetrahedral and square planar as indicated by DFT results. Interestingly, geometrical parameters and analysis of electron density suggest it is an UVI compound, in which oxygen atoms bear unpaired electron and negative charge.  相似文献   

13.
Two new double complex salts [Pd(NH3)4]3[Rh(NO2)6]2 (I) and [Pd(NH3)4]3[Rh(NO2)6]2·H2O (II) are synthesized and characterized. The techniques to produce one-phase residues of the salts are developed. The crystallographic data for I: a = 18.915(2) ?, V = 6767.4 ?3, F-43c space group, Z = 8, d x = 2.548 g/cm3; II: a = 21.160(6) ?, b = 8.085(7) ?, c = 21.363(4) ?, β = 91.71(4)°, V = 3661.1(6) ?3, P21/c space group, d x = 2.357 g/cm3. Thermal properties of the obtained compounds in the hydrogen and helium atmosphere are studied. It is shown that the final product of their decomposition both in the inert and reducing atmosphere is a powder consisting of bimetallic nanosized particles (nanoalloy) of Pd0.59Rh0.41 (Fm-3m space group, a = 3.856(2) ?, crystallite size of 8–11 nm).  相似文献   

14.
15.
本文用(NH4)2WS4,Ag[S2P(OCH2Ph)2]和PPh3为原料合成了簇合物[WS4Ag3(PPh3)3{S2P(OCH2Ph)3}],并得到了晶体。晶体属正交晶系,空间群为P212121,晶胞参数a=1.32370(4)nm,b=1.34427(4)nm,c=3.83246(11)nm。X-射线单晶结构测定结果表明它具有巢状分子结构,配体(PhCH2O)2PS2-(简称dtp)的两个S原子中的一个硫原子仅与一个金属原子配位,另一个硫原子则同时与两个金属原子配位。簇合物的非线性光学性质用脉宽8ns激光在532nm波长进行了研究。该化合物表现为一定的光学吸收和强的自聚焦效应,其三阶非线性吸收系数α2=1.50×10-10m·W-1,折射系数n2=2.45×10-11esu。  相似文献   

16.
Oxo/hydoxo zirconium(IV) complex of the general formula [Zr63-O)43-OH)4(OOCCH2tBu)92-OH)3]2 has been isolated, when Zr(OiPr)4 reacted with a 2-fold excess of 3,3-dimethylbutyric acid. Single crystal X-ray diffraction data, collected at 103 and 153 K, showed that the studied compound crystallizes in hexagonal system (P63/m (no. 176)). Structure consists of dimers composed of [Zr63-O)43-OH)4(OOCCH2tBu)9] sub-units, linked by six μ2-OH bridges. Infrared spectroscopic studies proved the presence of hydroxo groups in the structure of studied clusters and formation of different types of oxo/hydroxo bridges. The application of variable temperature infrared spectroscopy and differential scanning calorimetry revealed that the structure of this complex undergoes the phase transitions at 143–183 and 203–293 K. Comparison of spectral and crystallographic data suggests that these phase transitions might be related to changes in the strength of Zr–O bonds of μ2-OH bridges linking complex sub-units, and change in symmetry of the crystal lattice (from hexagonal to trigonal). Analysis of thermogravimetric data showed that decomposition of [Zr63-O)43-OH)4(OOCCH2tBu)92-OH)3]2 proceeds with complete conversion to ZrO2 (monoclinic form) between 603 and 803 K.  相似文献   

17.
Treatment of unsaturated [Os3(CO)83-Ph2PCH2P(Ph)C6H4}(μ-H)] (2) with tBuNC at room temperature gives [Os3(CO)8(CNBut)){μ3-Ph2PCH2P(Ph)C6H4}(μ-H)] (3) which on thermolysis in refluxing toluene furnishes [Os3(CO)7(CNBut){μ3-Ph2PCHP(Ph)C6H4}(μ-H)2] (4). Reaction of the labile complex [Os3(CO)9(μ-dppm)(NCMe)] (5) with tBuNC at room temperature affords the substitution product [Os3(CO)9(μ-dppm)(CNBut)] (6). Thermolysis of 6 in refluxing toluene gives 4. On the other hand, the reaction of unsaturated [Os3(CO)932-C7H3(2-Me)NS}(μ-H)] (7) with tBuNC yields the addition product [Os3(CO)9(CNBut){μ-η2-C7H3(2-Me)NS}(μ-H)] (8) which on decarbonylation in refluxing toluene gives unsaturated [Os3(CO)8(CNBut){μ32-C7H3(2-Me)NS}(μ-H)] (9). Compound 9 reacts with PPh3 at room temperature to give the adduct [Os3(CO)8(PPh3)(CNBut){μ-η2-C7H3(2-Me)NS(μ-H)] (10). Compound 8 exists as two isomers in solution whereas 10 occurs in four isomeric forms. The molecular structures of 3, 6, 8, and 10 have been determined by X-ray diffraction studies.  相似文献   

18.
The compounds [{VO(O2)2(NH3)}2{μ-Cu(NH3)4}] (1) and [Zn(NH3)4][VO(O2)2(NH3)]2 (2) were prepared and characterized by elemental analysis and infrared spectra. The single crystal X-ray study revealed that the structure of 1 consists of trinuclear complex molecules [(NH3)OV(O2)2{μ-Cu(NH3)4}(O2)2VO(NH3)] with a rare heterobimetalic peroxo bridge: copper(II)–peroxo ligand–vanadium(V). The structure of 2 is composed of tetraamminezinc(II) cations and ammineoxodiperoxovanadate(V) anions. In course of thermal decomposition of 1 performed up to 620 °C, the following intermediate products: [Cu(NH3)2(VO3)2], and subsequently a mixture of V2O5 with monoclinic β-Cu2V2O7, were gradually formed. The final product of decomposition is Cu(VO3)2. The thermal decomposition of 2 is a two-step process. In the first stage, [Zn(NH3)3(VO3)2] as supposed intermediate was formed, which transformed at higher temperatures by release of ammonia molecules to the monoclinic modification of Zn(VO3)2.  相似文献   

19.
The new dinuclear copper(I) complex, [Cu2((Me-Pk)2En)(PPh3)4](ClO4)2 · 2CHCl3 (I), where (Me-Pk)2En = N,N′-bis(1-pyridin-2-yl-ethylidene)ethane-1,2-diamine), has been synthesized and characterized by elemental analyses, FT-IR, and single-crystal X-ray diffraction method. In this complex, two Cu(PPh3)2 units are connected by one (Me-Pk)2En bridging ligand. The coordination geometry around each copper(I) atom is a distorted tetrahedron formed by two N atoms from (Me-Pk)2En and two P atoms from the PPh3 ligands. The distance between two copper atoms is 7.06(1) ?.  相似文献   

20.
The reaction of indium thiocyanate with bipyridine (4,4-Bipy) and urotropine (Ur) gave [H2(4,4′-Bipy)][In(H2O)2(NCS)4]2 (I) and [HUr]2[In(H2O)(NCS)5] · 2H2O (II), which were identified using elemental analysis, IR spectra, and thermogravimetric analysis. The thermal decomposition of compound I and II ends at 650 and 640°C, respectively, and gives In2O3. X-Ray diffraction analysis of compound I showed that complex anions in the crystal form chains through O-H…S hydrogen bonds. The anion chains form a close packing of columns with bipyridine cations located in the voids. Original Russian Text ? S.P. Petrosyants, A.B. Ilyukhin, V.A. Ketsko, 2008, published in Zhurnal Neorganicheskoi Khimii, 2008, Vol. 53, No. 6, pp. 951–955.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号