首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
The title compound, C9H9NS3, crystallizes with two mol­ecules in the asymmetric unit. In both mol­ecules, the di­thia­ne‐2‐thione rings adopt a symmetric half‐boat conformation with the C atom opposite the C—Sthione bond out of the plane. The pyridine ring is in an equatorial position and is twisted out of the plane of the half‐boat by 82.7 (2) and 84.5 (2)° in the two mol­ecules, so that the N atom is trans to the axial C—H bond in both cases.  相似文献   

2.
The title compound, C21H23ClN4O2·0.5H2O, contains two independent mol­ecules in the asymmetric unit. In each mol­ecule the piperazine ring adopts a chair conformation; the deviations of the piperazine N atoms from the best plane through the remaining four C atoms are ?0.678 (3) and 0.662 (3) Å in mol­ecule A, and 0.687 (3) and ?0.700 (3) Å in mol­ecule B. The mol­ecules are linked by two hydrogen bonds of the O—H?N type involving the O atom of the water mol­ecule of crystallization.  相似文献   

3.
The crystal structure of the title compound, C15H17NO2, contains two nearly identical but crystallographically independent mol­ecules, each with a double bond connecting an aza­bicyclic ring system to a 3‐methoxy­benzyl­idene moiety. The space group is triclinic P. The benzene ring is twisted by 18.44 (5) and 22.35 (4)° with respect to the plane of the double bond connected to the azabicyclic ring system for the two mol­ecules. In addition to C—H⋯π inter­actions, mol­ecules are held together in the solid state by van der Waals inter­actions.  相似文献   

4.
The title compound, C26H21NO2S2, which consists of a benzo­thia­zole skeleton with α‐naphthyl­vinyl and tosyl groups at positions 2 and 3, respectively, was prepared by palladium–copper‐catalyzed heteroannulation. The E configuration of the mol­ecule about the vinyl C=C bond is established by the benzothiazole–naphthyl C—C—C—C torsion angle of 177.5 (4)°. The five‐membered heterocyclic ring adopts an envelope conformation with the Csp3 atom 0.380 (6) Å from the C2NS plane. The two S—C [1.751 (4) and 1.838 (4) Å] and two N—C [1.426 (5) and 1.482 (5) Å] bond lengths in the thia­zole ring differ significantly.  相似文献   

5.
The title complex, C17H9N5·C6H4S4, contains π‐deficient bis(di­nitrile) and TTF mol­ecules stacked alternately in columns along the a‐axis direction; the interplanar angle between the TTF molecule and the isoindolinyl C4N[C(CN)2]2 moiety is 1.21 (4)°. The N‐allyl moiety in the TCPI mol­ecule is oriented at an angle of 87.10 (10)° with respect to the five‐membered C4N ring, and the four C[triple‐bond]N bond lengths range from 1.134 (3) to 1.142 (3) Å, with C—C[triple‐bond]N angles in the range 174.3 (3)–176.9 (2)°. In the TTF system, the S—C bond lengths are 1.726 (3)–1.740 (3) and 1.751 (2)–1.763 (2) Å for the external S—C(H) and internal S—C(S) bonds, respectively.  相似文献   

6.
The central part of the title mol­ecule, C50H66, is planar, all the rings being in the same plane; the lateral chains are also planar (excluding H atoms), almost perpendicular to the ring plane and grafted on the same side of the mol­ecule. The mol­ecule has nearly a mirror plane, perpendicular to the central C—C bond, instead of the centre of symmetry expected. The orientation of the plane of the rings is approximately 45° from the unit‐cell b axis, so that neighbouring mol­ecules are essentially perpendicular.  相似文献   

7.
The structures of 4‐dimethyl­amino‐β‐nitro­styrene (DANS), C10H12N2O2, and 4‐dimethyl­amino‐β‐ethyl‐β‐nitro­styrene (DAENS), C12H16N2O2, have been solved at T = 100 K. The structure solution for DANS was complicated by the presence of a static disorder, characterized by a misorientation of 17% of the mol­ecules. The mol­ecule of DANS is almost planar, indicating significant conjugation, with a push–pull effect through the styrene skeleton extending up to the terminal substituents and enhancing the dipole moment. As a consequence of this conjugation, the hexa­gonal ring displays a quinoidal character; the lengths of the C—N [1.3595 (15) Å] and C—C [1.448 (2) Å] bonds adjacent to the benzene ring are shorter than single bonds. The mol­ecules are stacked in dimers with anti­parallel dipoles. In contrast, the mol­ecule of DAENS is not planar. The ethyl substituent pushes the nitro­propene group out of the benzene plane, with a torsion angle of −21.9 (3). Nevertheless, the mol­ecule remains conjugated, with a shortening of the same bonds as in DANS.  相似文献   

8.
The title mol­ecule, C11H12O3, is almost planar, with an average deviation of the C and O atoms from the least‐squares plane of 0.146 (4) Å. The geometry about the C=C bond is trans. The phenyl ring and –COOCH3 group are twisted with respect to the double bond by 9.3 (3) and 5.6 (5)°, respectively. The endocyclic angle at the junction of the propenoate group and the phenyl ring is decreased from 120° by 2.6 (2)°, whereas two neighbouring angles around the ring are increased by 2.3 (2) and 0.9 (2)°. This is probably associated with the charge‐transfer interaction of the phenyl ring and –COOCH3 group through the C=C double bond. The mol­ecules are joined together through C—H?O hydrogen bonds between the methoxy and ester groups to form characteristic zigzag chains extended along the c axis.  相似文献   

9.
The title compounds, 1‐chloro‐3,6‐di­methoxy‐2,5‐di­methyl­benzene, (IIIa), and 1‐­chloro‐3,6‐di­methoxy‐2,4‐di­methyl­benzene, (IIIb), both C10H13ClO2, were obtained from 2,5‐ and 2,6‐di­methyl‐1,4‐benzo­quinone, respectively, and are intermediates in the synthesis of ammonium quinone derivatives. The isomers have different substituents around the methoxy groups and crystallize in different space groups. In both mol­ecules, the methoxy groups each have different orientations with respect to the benzene ring. In both cases, one methoxy group lies in the plane of the ring and can participate in conjugation with the aromatic system, while the second is almost perpendicular to the plane of the aromatic ring. The C—O—C bond angles around these substituents are also different: 117.5 (4) and 118.2 (3)° in (IIIa) and (IIIb), respectively, when the methoxy groups lie in the plane of the ring, and 114.7 (3) and 113.6 (3)° in (IIIa) and (IIIb), respectively, when they are out of the plane of the ring.  相似文献   

10.
The title compounds, C22H22N4 and C24H26N4O2 [alternative names: 2,6‐dibenzyl‐2,3,6,7‐tetrahydro‐1H,5H‐dipyrrolo[3,4‐b; 3′,4′‐e]pyrazine and 2,6‐bis(4‐methoxybenzyl)‐2,3,6,7‐tetrahydro‐1H,5H‐dipyrolo[3,4‐b;3′,4′‐e]pyrazine], two 1,2,3,5,6,7‐hexa­hydro‐2,4,6,8‐tetra­aza‐s‐indacene derivatives, are both centrosymmetric and have similar S‐shaped structures. In the former, there are two independent mol­ecules (A and B), both of which possess Ci symmetry. These two mol­ecules are arranged such that the benzene ring substituent of mol­ecule B is directed towards the plane of the benzene ring substituent of mol­ecule A, with a dihedral angle of 55.4 (2)° between their planes. The shortest C—H⋯C distance is, however, only 3.21 (1) Å. In both compounds, the benzene ring substituents are almost perpendicular to the plane of the central pyrazine ring, and the pyrrolidine rings have perfect envelope conformations. In the crystal structures of both compounds, the mol­ecules pack in a herring‐bone arrangement.  相似文献   

11.
The title compound, [PdBr2(C21H13F5N2)2], crystallizes with two independent centrosymmetric conformational isomers having a square‐planar coordination at the Pd atom. The conformational isomers differ by the ligands having a cis or trans orientation of their benzyl and pentafluorobenzyl rings with respect to the benzimidazole ring plane. The benzimidazole rings are rotated with respect to the coordination plane of the metal by 79.1 (2) and 75.2 (1)° for mol­ecules A and B, respectively. The Pd—Br bond lengths are 2.4218 (8) and 2.4407 (10) Å for mol­ecules A and B, respectively, and the Pd—C bond lengths are 2.030 (8) and 2.018 (9) Å. The crystal structure contains two types of C—H⋯F and one type of C—H⋯Br intra­molecular contact, as well as C—H⋯π inter­actions.  相似文献   

12.
The crystal structure of the title mixed azine, C17H17ClN2O, contains four independent mol­ecules, AD, and mol­ecule B is disordered. All four mol­ecules have an N—N gauche conformation, with C—N—N—C torsion angles of 136.5 (4), 137.0 (4), ?134.7 (4) and ?134.7 (4)°, respectively. The phenyl rings are also somewhat twisted with respect to the plane defined by Cipso and the imine bond. On average, the combined effect of these twists results in an angle of 64.7° between the best planes of the two phenyl rings. Arene–arene double T‐contacts are the dominant intermolecular inter­action. The methoxy‐substituted phenyl ring of one azine mol­ecule interacts to form a T‐contact with the methoxy‐substituted phenyl ring of an adjacent mol­ecule and, similarly, two chloro‐substituted phenyl rings of neighboring mol­ecules interact to form another T‐contact. The only exception is for mol­ecule B, for which the disorder leads to the formation of T‐­contacts between methoxy‐ and chloro‐substituted phenyl rings. The prevailing structural motif of T‐contact formation between like‐substituted arene rings results in a highly dipole‐parallel‐aligned crystal structure.  相似文献   

13.
The title compounds, 4‐(2‐naphthyl­oxy­methyl­carbonyl)­morpholine, C16H17NO3, (I), and 4‐methyl‐1‐(2‐naphthyl­oxy­methyl­carbonyl)­piper­azine, C17H20N2O2, (II), are potential antiamnesics. The morpholine ring in (I) and the piperazine ring in (II) adopt chair conformations. In (I), the mol­ecules are linked by weak intermolecular C—H⃛O interactions into chains that have a graph‐set motif of C(10), while in (II), the mol­ecules are linked by weak intermolecular C—H⃛O interactions that generate two C(7) graph‐set motifs. The dihedral angle between the naphthalene moiety and the best plane through the morpholine ring is 20.62 (4)° in (I), while the naphthalene moiety is oriented nearly perpendicular to the mean plane of the piperazine ring in (II).  相似文献   

14.
The title compound, C28H27N3O4S, crystallizes in the centrosymmetric space group P21/n, with one mol­ecule in the asymmetric unit. In the indole ring, the dihedral angle between the fused rings is 3.6 (1)°. The phenyl ring of the sulfonyl substituent makes a dihedral angle of 79.2 (1)° with the best plane of the indole moiety. The phenyl ring of the di­methyl­amino­phenyl group is orthogonal to the phenyl ring of the phenyl­sulfonyl group. The dihedral angle formed by the weighted least‐squares planes through the pyrrole ring and the phenyl ring of the di­methyl­amino­phenyl group is 7.8 (1)°. The molecular structure is stabilized by C—H?O and C—H?N interactions.  相似文献   

15.
In the title compound, C13H11NO4S2, the nitro group is rotated by 44.1 (1)° out of the plane of the adjacent aryl ring and the toluene­thio­sulfonate group is almost orthogonal to the plane of the nitrated aryl ring. There are three types of C—H?O hydrogen bond in the structure [C?O range 3.324 (3)–3.503 (3) Å; C—H?O range 160–173°] and these link the mol­ecules into a three‐dimensional framework.  相似文献   

16.
The crystal structure of the title compound, C20H17NO4S, (I), was determined in order to compare the solution and solid‐state conformations. The mol­ecule was synthesized as a building block for incorporation into oligosaccharides comprised of conformationally restricted furan­ose residues. The furan­ose ring adopts an envelope conformation with the ring O atom displaced above the plane (an OE conformation). The pseudorotational phase angle (P) is 88.6° and the puckering amplitude (τm) is 31.5°. The C2—C1—S—C(Ph) torsion angle is ?163.2 (2)°, which places the aglycone in the exo‐anomeric effect preferred position. The C1—S—C14 bond angle is 99.02 (13)° and the plane of the cresyl moiety is oriented nearly parallel to the four in‐plane atoms of the furan­ose ring envelope. The orientation about the C4—C5 bond is gauchegauche [Bock & Duus (1994). J. Carbohydr. Chem. 13 , 513–543].  相似文献   

17.
The mol­ecules of the title compound, C26H15N3S, have a penta­cyclic ring system which is almost planar, with the central ring in a flattened boat conformation. The folding angle between the two quinoline rings is 6.75 (7)°. The 14‐phen­yl substituent is in a quasi‐axial conformation, while the 14‐cyano substituent is in a quasi‐equatorial conformation with respect to the thio­pyran ring. The S⋯C—Cphen­yl and S⋯C—CCN angles are 116.8 (2) and 129.3 (2)°, respectively. The plane of the phen­yl group is nearly coplanar with the plane bis­ecting the dihedral angle of the penta­cyclic ring system.  相似文献   

18.
The title compound, C22H24N4O4, was prepared from propyl chloro­formate and 3,6‐di­phenyl‐1,2‐di­hydro‐s‐tetrazine. This reaction yields the title compound rather than di­propyl 3,6‐di­phenyl‐1,4‐di­hydro‐s‐tetrazine‐1,4‐di­carboxyl­ate. The 2,3‐di­aza­buta­diene group in the central six‐membered ring is not planar; the C=N double‐bond length is 1.285 (2) Å, and the average N—N single‐bond length is 1.401 (3) Å, indicating a lack of conjugation. The ring has a twist conformation, in which adjacent N atoms lie 0.3268 (17) Å from the plane of the ring. The mol­ecule has twofold crystallographic symmetry.  相似文献   

19.
The title compound, C7H8FO6PS·H2O, contains both phospho­nic and sulfonic acid functionalities. An extensive network of O—H?O hydrogen bonds is present in the crystal structure. The three acidic protons are associated with the phospho­nate group. Two protons experience typical hydrogen‐bond contacts with the sulfonate‐O atoms, while the third has a longer covalent bond of 1.05 (3) Å to the phospho­nate‐O atom and a short hydrogen‐bond contact of 1.38 (3) Å to the water O atom (all O—H?O angles are in the range 162–175°). The sulfonate group is positioned so that one S—O bond is nearly coplanar with the phenyl ring [torsion angle O—S—C—C ?8.6 (2)°]. The phospho­nate group is oriented approximately perpendicular to the ring [torsion angle P—C—C—C 99.2 (2)°] with one P—O bond anti to the benzyl C—C bond. The mol­ecules pack in layers in the bc plane with the water mol­ecules in between adjacent pairs of inverted layers.  相似文献   

20.
Two new polymorph forms, (Ia) and (Ib), of the title compound, C14H17N3S, and its solvate with aceto­nitrile, C14H17N3S·0.25C2H3N, (Ic), have been investigated. Crystals of the two polymorphs were grown from different solvents, viz. ethanol and N,N‐di­methyl­form­amide, respectively. The polymorphs have different orientations of the thio­amide group relative to the CN substituent, with s‐cis and s‐trans geometry of the C=C—C=S diene fragment, respectively. Compound (Ic) contains two independent mol­ecules, A and B, with s‐cis geometry, and the solvate mol­ecule lies on a twofold axis. The core of each mol­ecule is slightly non‐planar; the dihedral angles between the conjugated C=C—CN linkage and the phenyl ring, and between this linkage and the thio­amide group are 13.4 (2) and 12.0 (2)° in (Ia), 14.0 (2) and 18.2 (2)° in (Ib), 2.3 (3) and 12.7 (4)° in molecule A of (Ic), and 23.2 (3) and 8.1 (4)° in molecule B of (Ic). As a result of strong conjugation between donor and acceptor parts, the substituted phenyl rings have noticeable quinoid character. In (Ib), there exists a very strong intramolecular steric interaction (H⋯H = 1.95 Å) between the bridging and thio­amide parts of the mol­ecule, which makes such a form less stable. In the crystal structure of (Ia), intermolecular N—H⋯N and N—H⋯S hydrogen bonds link mol­ecules into infinite tapes along the [10] direction. In (Ib), such intermolecular hydrogen bonds link mol­ecules into infinite (101) planes. In (Ic), intermolecular N—H⋯N hydrogen bonds link mol­ecules A and B into dimers, which are connected via N—H⋯S hydrogen bonds and form infinite chains along the c direction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号