首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In the crystal structure of the title compound [systematic name: diaqua­bis(6‐methyl‐2,2‐dioxo‐1,2,3‐oxathia­zin‐4‐olato‐κO4)bis­(3‐methyl­pyridine‐κN)nickel(II)], [Ni(C4H4NO4S)2(C6H7N)2(H2O)2], the NiII centre resides on a centre of symmetry and has a distorted octa­hedral geometry. The basal plane is formed by two carbonyl O atoms of two monodentate trans‐oriented acesulfamate ligands and two trans aqua ligands. The axial positions in the octa­hedron are occupied by two N atoms of two trans pyridine ligands. Mol­ecules are stacked in columns running along the a axis. There are π–π stacking inter­actions between the mol­ecules in each column, with a distance of 3.623 (2) Å between the centroids of the pyridine rings. There are also O—H⋯O inter­actions between the columns.  相似文献   

2.
The aldehyde moiety in the title complex, chloro(2‐pyridinecarboxaldehyde‐N,O)(2,2′:6′,2′′‐terpyridine‐κ3N)ruthenium(II)–chloro­(2‐pyridine­carboxyl­ic acid‐N,O)(2,2′:6′,2′′‐ter­pyridine‐κ3N)­ruthenium(II)–perchlorate–chloro­form–water (1.8/0.2/2/1/1), [RuCl­(C6H5NO)­(C15H11N3)]1.8[RuCl­(C6H5­NO2)(C15H11N3)]0.2­(ClO4)2·­CHCl3·­H2O, is a structural model of substrate coordination to a transfer hydrogenation catalyst. The title complex features two independent RuII complex cations that display very similar distorted octahedral coordination provided by the three N atoms of the 2,2′:6′,2′′‐ter­pyridine ligand, the N and O atoms of the 2‐pyridine­carbox­aldehyde (pyCHO) ligand and a chloride ligand. One of the cation sites is disordered such that the aldehyde group is replaced by a 20 (1)% contribution from a carboxyl­ic acid group (aldehyde H replaced by carboxyl O—H). Notable dimensions in the non‐disordered complex cation are Ru—N 2.034 (2) Å and Ru—O 2.079 (2) Å to the pyCHO ligand and O—C 1.239 (4) Å for the pyCHO carbonyl group.  相似文献   

3.
In the crystal structure of the title compound {systematic name: bis­[6‐methyl‐1,2,3‐oxa­thia­zin‐4(3H)‐one 2,2‐dioxide(1−)‐κ2N3,O4]bis­(3‐meth­yl­pyridine)copper(II)}, [Cu(C4H4NO4S)2(C6H7N)2], the CuII centre resides on a centre of symmetry and has an octa­hedral geometry that is distorted both by the presence of four‐membered chelate rings and because of the Jahn–Teller effect. The equatorial plane is formed by the N atoms of two methyl­pyridine ligands and by the more basic O atoms of the acesulfamate ligands, while the weakly basic N atoms of these ligands are in elongated axial positions with a misdirected valence. The crystal is stabilized by two inter­molecular C—H⋯O inter­actions involving the methyl and CH groups, and the sulfonyl O atoms of the acesulfamate group.  相似文献   

4.
The crystal structure of catena‐poly­[[(6‐carboxy­pyridine‐2‐carb­oxyl­ato‐κ3O,N,O′)­lithium(I)]‐μ‐aqua‐κ2O:O], [Li(C7H4NO4)­(H2O)]n, contains the Li+ ion coordinated to two O atoms and the N atom of the 6‐carboxy­pyridine‐2‐carboxyl­ate ligand, and to two water O atoms, forming a pentavalent coordination geometry. The molecule resides on a mirror plane which contains the Li and N atoms, the para‐CH unit, and the O atom of the coordinated water mol­ecule. The O atom of the water mol­ecule is coordinated to two Li atoms, forming an infinite polymeric chain.  相似文献   

5.
In the title compound {alternative name: poly­[silver(I)‐μ‐(3‐­amino‐2‐chloro­pyridine)‐μ‐nitr­ato]}, [Ag(NO3)(C5H5ClN2)]n the AgI atom is in an irregular AgN2O3 geometry, surrounded by one pyridyl N atom [Ag—N 2.283 (5) Å], one amine N atom [Ag—N 2.364 (6) Å] and three O atoms from different nitrate ions [Ag—O 2.510 (6)–2.707 (6) Å]. The Ag ions are bridged by the 3‐amino‐2‐chloro­pyridine ligands into helical chains. Adjacent uniform chiral chains are further interlinked through the NO3 bridges into an interesting two‐dimensional coordination network in the solid.  相似文献   

6.
The structures of trans‐bis[2‐(amino­methyl)­pyridine‐κ2N,N′]­bis­(saccharinato‐κN)­zinc(II), [Zn(C7H4NO3S)2(C6H8N2)2], (I), and [2‐(amino­ethyl)­pyridine‐κ2N,N′]bis­(saccharinato‐κN)­zinc(II), [Zn(C7H4NO3S)2(C7H10N2)], (II), exhibit octa‐ and tetrahedrally coordinated ZnII atoms, respectively. The di­amine ligands behave as N,N′‐bidentate ligands, while saccharinate (sac) is coordinated through the N atom. In (I), the complex lies about an inversion centre with the Zn atom disordered and displaced by 0.256 (2) Å from a centre of symmetry towards a sac N atom. The crystal structure of (I) is stabilized by N—H⋯O hydrogen bonds and the crystal packing of (II) is determined by hydrogen bonding as well as weak π–π stacking interactions between the sac ligands.  相似文献   

7.
The crystal structures of tris(2‐methyl­quinolin‐8‐olato‐N,O)­iron(III), [Fe­(C10­H8­NO)3], (I), and aqua­bis(2‐methyl­quinolin‐8‐olato‐N,O)­copper(II), [Cu­(C10­H8NO)2­(H2O)], (II), have been determined. Compound (I) has a distorted octahedral configuration, in which the central Fe atom is coordinated by three N atoms and three O atoms from three 2‐methylquinolin‐8‐olate ligands. The three Fe—O bond distances are in the range 1.934 (2)–1.947 (2) Å, while the three Fe—N bond distances range from 2.204 (2) to 2.405 (2) Å. In compound (II), the central CuII atom and H2O group lie on the crystallographic twofold axis and the coordination geometry of the CuII atom is close to trigonal bipyramidal, with the three O atoms in the basal plane and the two N atoms in apical positions. The Cu—N bond length is 2.018 (5) Å. The Cu—O bond length in the basal positions is 1.991 (4) Å, while the Cu—O bond length in the apical position is 2.273 (6) Å. There is an intermolecular OW—H?O hydrogen bond which links the mol­ecules into a linear chain along the b axis.  相似文献   

8.
In the title compound, [CuCl2(C11H15N3O2)], the CuII ion is five‐coordinated in a strongly distorted trigonal–bipyramidal arrangement, with the two methyl­oxime N atoms located in the apical positions, and the pyridine N and the Cl atoms located in the basal plane. The two axial Cu—N distances are almost equal (mean 2.098 Å) and are substantially longer than the equatorial Cu—N bond [1.9757 (15) Å]. It is observed that the N(oxime)—M—N(pyridine) bond angle for five‐membered chelate rings of 2,6‐diacetyl­pyridine dioxime complexes is inversely related to the magnitude of the M—N(pyridine) bond. The structure is stabilized by intra‐ and inter­molecular C—H⋯Cl hydrogen bonds which involve the methyl H atoms, except for one of the two acetyl­methyl groups.  相似文献   

9.
catena‐Poly­[di­cyclo­hexyl­ammonium [tri­butyl­tin‐μ‐(4‐oxo‐4H‐pyran‐2,6‐di­carboxyl­ato‐O2:O6)]], (C12­H24N)­[Sn(C7­H2­O6)(C4H9)3], consists of 4‐oxo‐4H‐pyran‐2,6‐di­carboxyl­ato groups that axially link adjacent tri­butyl­tin units into a linear polyanionic chain. The ammonium counter‐ions surround the chain, and each cation forms a pair of hydrogen bonds to the double‐bond carbonyl O atoms of the same dianionic group. The chain propagates in a zigzag manner along the c axis of the monoclinic cell. In catena‐poly­[methyl­(phenyl)­ammonium [tri­butyl­tin‐μ‐(pyridine‐2,6‐di­carboxyl­ato‐O2:O6)]], (C7H10N)­[Sn(C7H3NO4)­(C4H9)3], the pyridine‐2,6‐di­carboxyl­ato groups also link the tri­butyl­tin groups into a chain, but the hydrogen‐bonded chain propagates linearly on the ac face of the monoclinic cell.  相似文献   

10.
The title compound, [SnCl2(CH3)(C6H5)(C5H8N2)2], was obtained by reaction of di­chloro­methyl­phenyl­tin(IV) and 3,5‐di­methyl­pyrazole (dmpz) in chloro­form, and was recrystallized from acetone. The structure consists of octahedral all‐trans [SnMePhCl2(dmpz)2] mol­ecules, with the Sn atom coordinated to two C [Sn—C 2.127 (5) and 2.135 (4) Å], two Cl [Sn—Cl 2.5753 (8) Å] and two N atoms [Sn—N 2.357 (3) Å]. The dmpz ligands, bound to the metal through their unprotonated N atoms, form weak intra‐ and intermolecular hydrogen bonds with the Cl ligands via their NH groups, giving rise to a polymeric chain along the c axis.  相似文献   

11.
The title one‐dimensional chain polymer complex, [Mn(C6H4NO3)Cl(C6H5N)2]n, was isolated from the reaction of MnCl2 with 6‐oxo‐1,6‐dihydro­pyridine‐2‐carboxylic acid (HpicOH) in pyridine. The asymmetric unit contains one [Mn(HPicO)Cl(py)2] moiety (py is pyridine), with the (HpicO) ligand acting in a tridentate manner via the two carboxyl­ate O atoms and the pyridone O atom. The operation of inversion centres generates eight‐ and 14‐membered rings and, in conjunction with an a‐axis translation, leads to an infinite chain extending along [100]. The Mn⋯Mn separations in this chain are 5.1069 (6) and 7.1869 (6) Å. The MnII atom has a distorted octahedral coordination, with trans‐axial pyridine ligands and with three O atoms and the Cl atom in the equatorial plane. The conformation of the 14‐membered ring is stabilized by pairs of inversion‐related N—H⋯O hydrogen bonds.  相似文献   

12.
The Mo atoms in the title compounds, i.e. triethyl­ammonium cis‐tetra­chloro­bis(4‐ethyl­pyridine‐N)­molybdate(III), cis‐(C6H16N)­[MoCl4(C7H9N)2], and trans‐tetra­chloro­bis(4‐ethyl­pyridine‐N)molybdenum(IV), trans‐[MoCl4(C7H9N)2], are six‐coordinate with octahedral geometry. The Mo atom in the latter complex lies on a site with crystallographic 2/m symmetry.  相似文献   

13.
The title compound, [UO2(C33H38N2O2)2](CF3SO3)2·2C5H5N, has been obtained by reaction of UIV tri­fluoro­methane­sulfonate with ptert‐butyl­tetrahomodioxacalix­[4]­arene in pyridine. The uranyl ion lies on an inversion centre and is bound to two O atoms from each diphenoxide ligand, which gives the usual square‐planar equatorial environment. The zwitterionic diphenoxide species results from nucleophilic attack by pyridine on the benzylic ether C atoms of the homooxacalixarene, assisted by initial U coordination to the ether groups, with subsequent metal oxidation giving the uranyl moiety.  相似文献   

14.
In the title compound, [RuCl2(C2H3N)(C27H31N3)]·0.5CH2Cl2, the RuII ion is six‐coordinated in a distorted octa­hedral arrangement, with the two Cl atoms located in the apical positions, and the pyridine (py) N atom, the two imino N atoms and the acetonitrile N atom located in the basal plane. The dichloromethane solvent mol­ecule lies on a twofold axis. The two equatorial Ru—Nimino distances are almost equal (mean 2.089 Å) and are substantially longer than the equatorial Ru—Npy bond [1.914 (4) Å]. It is observed that the NiminoM—Npy bond angle for the five‐membered chelate rings of pyridine‐2,6‐diimine complexes is inversely related to the magnitude of the M—Npy bond. The title structure is stabilized by intra‐ and inter­molecular C—H⋯Cl hydrogen bonds. The inter­molecular hydrogen bonds form an R66(24) ring and a chain of edge‐fused rings running parallel to the [001] direction.  相似文献   

15.
The title compound, also known as sodium nicotinate, Na+·C6H4NO2, consists of two unique Na atoms coordinated to two unique pyridine‐3‐­carboxyl­ate ligands through the N atoms and carboxylate groups. One Na atom and one pyridine‐3‐­carboxyl­ate ligand lie on a twofold axis. Extensive Na coordination results in a three‐dimensional array comprising infinite NaO2CR chains linked by intrachain Na—N bonds.  相似文献   

16.
The structure of the title supramolecular complex, [Cu(C7H5O2)2(C5H6N2)2]·0.75C6H6, has been determined. The Cu2+ ion lies on an inversion centre and is coordinated by four O atoms of two opposing benzoate mol­ecules and two pyridine N atoms of two opposing amino­pyridine mol­ecules. The partially occupied benzene site lies across a twofold rotation axis. The crystal structure is dominated by two‐dimensional networks containing two different hydrogen‐bonded rings [(16) and (8)].  相似文献   

17.
The structure of the title compound, [PtCl2(C5H5N)(C2H6S)], consists of discrete mol­ecules in which the Pt‐atom coordination is slightly distorted square planar. The Cl atoms are trans to each other, with a Cl—Pt—Cl angle of 176.60 (7)°. The pyridine ligand is rotated 64.5 (2)° from the Pt square plane and one of the Pt—Cl bonds essentially bisects the C—S—C angle of the di­methyl sulfide ligand. In the crystal structure, there are extensive weak C—H⋯Cl interactions, the shortest of which connects mol­ecules into centrosymmetric dimers. A comparison of the structural trans influence on Pt—S and Pt—­N distances for PtS(CH3)2 and Pt(pyridine) fragments, respectively, in square‐planar PtII complexes is presented.  相似文献   

18.
In the title compound, [Co(C5H3N2O4)2(H2O)2]·C10H8N2, the Co atom is trans‐coordinated by two pairs of N and O atoms from two monoanionic 4,5‐di­carboxy­imidazole ligands, and by two O atoms from two coordinated water mol­ecules, in a distorted octahedral geometry. The 4,4′‐bi­pyridine solvent molecule is not involved in coordination but is linked by an N—H⋯N hydrogen bond to the neutral [Co(C5H3N2O4)2(H2O)2] mol­ecule. Both mol­ecules are located on inversion centers. The crystal packing is stabilized by N—H⋯N and O—H⋯O hydrogen bonds, which produce a three‐dimensional hydrogen‐bonded network. Offset π–π stacking interactions between the pyridine rings of adjacent 4,4′‐bi­pyridine molecules were observed, with a face‐to‐face distance of 3.345 (1) Å.  相似文献   

19.
In the crystal structure of the title compound, [N,N′‐bis(3‐­amino­propyl)­ethyl­enedi­amine‐κ4N,N′,N′′,N′′′][1,3,5‐triazine‐2,4,6(1H,3H,5H)‐tri­thionato(2−)‐κ2N,S]­zinc(II) ethanol sol­vate, [Zn(C8H22N4)2(C3HN3S3)]·C2H6O, the ZnII atom is octa­hedrally coordinated by four N atoms [Zn—N = 2.104 (2)–2.203 (2) Å] of a tetradentate N‐donor N,N′‐bis(3‐­amino­propyl)­ethyl­enedi­amine (bapen) ligand and by two S and N atoms [Zn—S = 2.5700 (7) Å and Zn—N = 2.313 (2) Å] of a tri­thio­cyanurate(2−) (ttcH2−) dianion bonded as a bidentate ligand in a cis configuration. The crystal structure of the compound is stabilized by a network of hydrogen bonds.  相似文献   

20.
In trans‐bis(5‐n‐butyl­pyridine‐2‐carboxyl­ato‐κ2N,O)­bis­(methanol‐κO)copper(II), [Cu(C10H12NO2)2(CH4O)2], the Cu atom lies on a centre of symmetry and has a distorted octahedral coordination. The Cu—O(methanol) bond length in the axial direction is 2.596 (3) Å, which is much longer than the Cu—­O(carboxylate) and Cu—N distances in the equatorial plane [1.952 (2) and 1.977 (2) Å, respectively]. In mer‐tris(5‐n‐bu­tyl­pyridine‐2‐carboxyl­ato‐κ2N,O)­iron(III), [Fe(C10H12NO2)3], the Fe atom also has a distorted octahedral geometry, with Fe—O and Fe—N bond‐length ranges of 1.949 (4)–1.970 (4) and 2.116 (5)–2.161 (5) Å, respectively. Both crystals are stabilized by stacking interactions of the 5‐n‐butyl­pyridine‐2‐carboxyl­ate ligand, although hydrogen bonds also contribute to the stabilization of the copper(II) complex.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号