首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Caesium vanadium(V) selenite contains infinite sheets of distorted vertex‐sharing VO6 octahedra, capped by selenite groups [dav(V—O) = 1.927 (4) Å and dav(Se—O) = 1.709 (3) Å]. Interlayer caesium cations complete the structure [dav(Cs—O) = 3.365 (4) Å].  相似文献   

2.
Hydro­thermally prepared ethyl­enedi­ammonium beryl­lo­phosphate, (C2H10N2)0.5[BePO4], is an analogue of aluminosilicate zeolite gismondine. A three‐dimensional network of vertex‐sharing BeO4 and PO4 tetrahedra [dav(Be—O) = 1.618 (3) Å, dav(P—O) = 1.5246 (14) Å and θav(Be—O—P) = 139.8°] encapsulates the disordered ethyl­enedi­ammonium cations in an eight‐ring channel system.  相似文献   

3.
Hydro­thermally prepared Ba3V2(HPO4)6 contains a three‐dimensional network of VIIIO6 octahedra [dav(V—O) = 2.014 (2) Å] and HPO4 [dav(P—O) = 1.537 (3) Å] tetrahedra, sharing vertices. 12‐coordinate Ba2+ cations [dav(Ba—O) = 2.944 (4) Å] complete the structure.  相似文献   

4.
The title compound, (NH4)ZnPO4–HEX, is built up from a three‐dimensional network of ZnO4 and PO4 tetrahedra [dav(Zn—O) = 1.9400 (7) Å and dav(P—O) = 1.5396 (7) Å], fused together via Zn—O—P links [θav = 133.47 (4)°]. An undisordered linear Zn—O—P bond occurs (all three atoms lie on a threefold axis). Extra‐framework NH4+ cations, which interact with the [ZnPO4]? framework by hydrogen bonds, complete the crystal structure.  相似文献   

5.
Hydro­thermally prepared La2(SeO3)3 contains a three‐dimensional network of LaO10 polyhedra [dav(La—O) = 2.622 (3) Å] and SeO3 pyramids [dav(Se—O) = 1.691 (3) Å]. One of the SeO3 pyramids is in a general position and the other has crystallographic m symmetry. There are pseudo‐channels in the [010] direction which are probably associated with the SeIV lone pairs.  相似文献   

6.
Nasicon-type trisodium discandium tris­(arsenate), Na3Sc2(AsO4)3, contains a polyhedral network of vertex-sharing octahedral ScO6 and tetrahedral AsO4 units [dav(Sc—O) = 2.089 (2) Å and dav(As—O) = 1.672 (2) Å] encapsulating two types of Na+ species. The sodium site occupancies are similar to those of the equivalent species in β-Na3Sc2(PO4)3.  相似文献   

7.
Reaction of CuCl2 · 2H2O, phenanthroline, maleic acid and NaOH in CH3OH/H2O (1:1 v/v) at pH = 7.0 yielded blue {[Cu(phen)]2(C4H2O4)2} · 4.5H2O, which crystallizes in the monoclinic space group C2/c (no. 15) with cell dimensions: a = 18.127(2)Å, b = 12.482(2)Å, c = 14.602(2)Å, β = 103.43(1)°, U = 3213.5(8)Å3, Z = 4. The crystal structure consists of the centrosymmetric dinuclear {[Cu(phen)]2(C4H2O4)2} complex molecules and hydrogen bonded H2O molecules. The Cu atoms are each square‐pyramidally coordinated by two N atoms of one phen ligand and three carboxyl O atoms of two maleato ligands with one carboxyl O atom at the apical position (d(Cu‐N) = 2.008, 2.012Å, equatorial d(Cu‐O) = 1.933, 1.969Å, axial d(Cu‐O) = 2.306Å). Two square‐pyramids are condensed via two apical carboxyl O atoms with a relatively larger Cu···Cu separation of 3.346(1)Å. The dinuclear complex molecules are assembled via the intermolecular π—π stacking interactions into 1D ribbons. Crossover of the resulting ribbons via interribbon π—π stacking interactions forms a 3D network with the tunnels occupied by H2O molecules. The title complex behaves paramagnetically between 5—300 K, following the Curie‐Weiss law χm(T—θ) = 0.435 cm3 · mol—1 · K with θ = 1.59 K.  相似文献   

8.
In the title compound, 4‐iodoanilinium 2‐carboxy‐6‐nitrobenzoate, C6H7IN+·C8H4NO6, the anions are linked by an O—H...O hydrogen bond [H...O = 1.78 Å, O...O = 2.614 (3) Å and O—H...O = 171°] into C(7) chains, and these chains are linked by two two‐centre N—H...O hydrogen bonds [H...O = 1.86 and 1.92 Å, N...O = 2.700 (3) and 2.786 (3) Å, and N—H...O = 153 and 158°] and one three‐centre N—H...(O)2 hydrogen bond [H...O = 2.02 and 2.41 Å, N...O = 2.896 (3) and 2.789 (3) Å, N—H...O = 162 and 105°, and O...H...O = 92°], thus forming sheets con­taining R(6), R(8), R(13) and R(18) rings.  相似文献   

9.
The title mol­ecule is dimeric, i.e. di‐μ‐tri­methyl­siloxy‐bis­(di­chloro­aluminium), [Al2Cl4(C3H9Si)2], and possesses exact crystallographic inversion symmetry. The O atoms of the tri­methyl­siloxy groups bridge the two Al atoms to form a four‐membered ring. The Si—O bond distance [1.711 (3) Å], the Al—O mean bond distance [1.806 (4) Å] and the mean Si—C bond distance [1.875 (6) Å] appear to agree well with standard data. Mean values for C—Si—C, O—Si—C, and Si—O—Al angles are 112.9 (3), 105.8 (2), and 131.8 (2)° repectively. The two ring angles O—Al—O and Al—O—Al are 84.43 (16) and 95.57 (16)°, respectively.  相似文献   

10.
Polycrystalline anhydrous Hg2(NO3)2 was prepared by drying Hg2(NO3)2·2H2O over concentrated sulphuric acid. Evaporation of a concentrated and slightly acidified mercury(I) nitrate solution to which the same volumetric amount of pyridine was added, led to the growth of colourless rod‐like single crystals of Hg2(NO3)2. Besides the title compound, crystals of hydrous Hg2(NO3)2·2H2O and the basic (Hg2)2(OH)(NO3)3 were formed as by‐products after a crystallization period of about 2 to 4 days at room temperature. The crystal structure was determined from two single crystal diffractometer data sets collected at —100°C and at room temperature: space group P21, Z = 4, —100°C [room temperature]: a = 6.2051(10) [6.2038(7)]Å, b = 8.3444(14) [8.3875(10)]Å, c = 11.7028(1) [11.7620(14)]Å, ß = 93.564(3) [93.415(2)]°, 3018 [3202] structure factors, 182 [182] parameters, R[2 > 2σ(2)] = 0.0266 [0.0313]. The structure is built up of two crystallographically inequivalent Hg22+ dumbbells and four NO3 groups which form molecular [O2N‐O‐Hg‐Hg‐O‐NO2] units with short Hg‐O bonds. Via long Hg‐O bonds to adjacent nitrate groups the crystal packing is achieved. The Hg‐Hg distances with an average of d(Hg‐Hg) = 2.5072Å are in the typical range for mercurous oxo compounds. The oxygen coordination around the mercury dumbbells is asymmetric with four and six oxygen atoms as ligands for the two mercury atoms of each dumbbell. The nitrate groups deviate slightly from the geometry of an equilateral triangle with an average distance of d(N‐O) = 1.255Å.  相似文献   

11.
The title compound, {[Co(C8H7NO2)2(H2O)2](NO3)2}n, is the first d‐metal ion complex involving bidentate bridging of a β‐dialdehyde group. The Co2+ ion is situated on an inversion centre and adopts an octahedral coordination with four equatorial aldehyde O atoms [Co—O = 2.0910 (14) and 2.1083 (14) Å] and two axial aqua ligands [Co—O = 2.0631 (13) Å]. The title compound has a two‐dimensional square‐grid framework structure supported by propane‐1,3‐dionate O:O′‐bridges between the metal ions. The organic ligand itself possesses a zwitterionic structure, involving conjugated anionic propane‐1,3‐dionate and cationic pyridinium fragments. Hydrogen bonding between coordinated water molecules, the pyridinium NH group and the nitrate anions [O...O = 2.749 (2) and 2.766 (3) Å, and N...O = 2.864 (3) Å] is essential for the crystal packing.  相似文献   

12.
Reactions of 1,10‐phenanthroline monohydrate, Na2C4H4O4 · 6 H2O and MnSO4 · H2O in CH3OH/H2O yielded a mixture of [Mn2(H2O)4(phen)2(C4H4O4)2] · 2 H2O ( 1 ) and [Mn(phen)2(H2O)2][Mn(phen)2(C4H4O4)](C4H4O4) · 7 H2O ( 2 ). The crystal structure of 1 (P1 (no. 2), a = 8.257(1) Å, b = 8.395(1) Å, c = 12.879(2) Å, α = 95.33(1)°, β = 104.56(1)°, γ = 106.76(1)°, V = 814.1(2) Å3, Z = 1) consists of the dinuclear [Mn2(H2O)4(phen)2(C4H4O4)2] molecules and hydrogen bonded H2O molecules. The centrosymmetric dinuclear molecules, in which the Mn atoms are octahedrally coordinated by two N atoms of one phen ligand and four O atoms from two H2O molecules and two bis‐monodentate succinato ligands, are assembled via π‐π stacking interactions into 2 D supramolecular layers parallel to (101) (d(Mn–O) = 2.123–2.265 Å, d(Mn–N) = 2.307 Å). The crystal structure of 2 (P1 (no. 2), a = 14.289(2) Å, b = 15.182(2) Å, c = 15.913(2) Å, α = 67.108(7)°, β = 87.27(1)°, γ = 68.216(8)°, V = 2934.2(7) Å3, Z = 2) is composed of the [Mn(phen)2(H2O)2]2+ cations, [Mn(phen)2(C4H4O4)] complex molecules, (C4H4O4)2– anions, and H2O molecules. The (C4H4O4)2– anions and H2O molecules form 3 D hydrogen bonded network and the cations and complex molecules in the tunnels along [001] and [011], respectively, are assembled via the π‐π stacking interactions into 1 D supramolecular chains. The Mn atoms are octahedrally coordinated by four N atoms of two bidentate chelating phen ligands and two water O atoms or two carboxyl O atoms (d(Mn–O) = 2.088–2.129 Å, d(Mn–N) = 2.277–2.355 Å). Interestingly, the succinato ligands in the complex molecules assume gauche conformation bidentately to chelate the Mn atoms into seven‐membered rings.  相似文献   

13.
Single crystals of three rubidium uranyl selenates, Rb2[(UO2)(SeO4)2(H2O)](H2O) ( 1 ), Rb2[(UO2)2(SeO4)3(H2O)2](H2O)4 ( 2 ), and Rb4[(UO2)3(SeO4)5(H2O)] ( 3 ), have been prepared by evaporation from aqueous solutions made out of mixtures of uranyl nitrate, selenic acid and Rb2CO3. The structures of all compounds have been solved by direct methods on the basis of X‐ray diffraction data sets. The crystallographic data are as follows: ( 1 ): orthorhombic, Pna21, a = 13.677(2), b = 11.8707(13), c = 7.6397(9) Å, V = 1240.4(3) Å3, R1 = 0.045 for 2396 independent observed reflections; ( 2 ): triclinic, P1¯, a = 8.4261(12), b = 11.8636(15), c = 13.3279(18) Å, α = 102.612(10), β = 107.250(10), γ = 102.510(10)°, V = 1183.7(3) Å3, R1 = 0.067 for 4762 independent observed reflections; ( 3 ): orthorhombic, Pbnm, a = 11.3761(14), b = 15.069(2), c = 19.2089(17) Å, V = 3292.9(7) Å3, R1 = 0.075 for 3808 independent observed reflections. The structures of the phases 1 , 2 , and 3 are based upon uranyl selenate hydrate sheets composed from corner‐sharing pentagonal [UO7]8— bipyramids and [SeO4]2— tetrahedra. In the crystal structure of 1 , the sheets have composition [(UO2)(SeO4)2(H2O)]2— and run parallel to (001). The interlayer contains Rb+ cations and additional H2O molecules. In structure of 2 , the [(UO2)2(SeO4)3(H2O)2]2— sheets are oriented parallel to (101). Highly disordered Rb+ cations and H2O molecules are located between the sheets. The structure of 3 is based upon [(UO2)3(SeO4)5(H2O)]4— sheets stacked parallel to (010) and contains Rb+ cations in the interlayers. The topologies of the uranyl oxoselenate sheets observed in the structures of 1 , 2 , and 3 are related to the same simple and highly‐symmetric graph consisting of 3‐connected white and 6‐connected black vertices.  相似文献   

14.
Synthesis, Crystal Structure, Vibrational Spectra, and Normal Coordinate Analysis of [PtX2ox]2−, X = Cl, Br By treatment of [PtX4]2— (X = Cl, Br) with C2O42— (ox2—) in water [PtCl2ox]2— and [PtBr2ox]2— are formed which have been isolated by ion exchange chromatography on diethylaminoethyl cellulose. The crystal structures of [(C5H5N)2CH2][PtCl2ox]·2H2O ( 1 ) (orthorhombic, space group Pbca, a = 18.451(1), b = 18.256(1), c = 19.913(1)Å, Z = 16) and [(C5H5N)2CH2][PtBr2ox] ( 2 ) (monoclinic, space group P21/c, a = 7.249(1), b = 10.180(1), c = 21.376(1)Å, β = 93.415(9)°, Z = 4) reveal nearly planar complex anions with C2v point symmetry. The bond lengths are Pt‐Cl = 2.286, Pt‐Br = 2.405 und Pt‐O = 2.016 ( 1 ) und 2.030Å ( 2 ). In the vibrational spectra the PtX stretching vibrations are observed at 335 and 336 ( 1 ) and 219 and 231 cm—1 ( 2 ). The PtO stretching vibrations are coupled with internal modes of the oxalato ligands and appear in the range of 350 — 800 cm—1. Using the molecular parameters of the X‐Ray determinations the IR and Raman spectra of the (n‐Bu4N) salts are assigned by normal coordinate analysis. The valence force constants are fd(PtCl) = 1.97, fd(PtBr) = 1.78 and fd(PtO) = 2.48 ( 1 ) and 2.38 mdyn/Å ( 2 ). Taking into account increments of the trans influence a good agreement between observed and calculated frequencies is achieved. The NMR shifts are δ(195Pt) = 3603.9 ( 1 ) and 3318.1 ppm ( 2 ).  相似文献   

15.
Cubic [Ta6Br12(H2O)6][CuBr2X2]·10H2O and triclinic [Ta6Br12(H2O)6]X2·trans‐[Ta6Br12(OH)4(H2O)2]·18H2O (X = Cl, Br, NO3) cocrystallize in aqueous solutions of [Ta6Br12]2+ in the presence of Cu2+ ions. The crystal structures of [Ta6Br12(H2O)6]Cl2·trans‐[Ta6Br12(OH)4(H2O)2]·18H2O ( 1 ) and [Ta6Br12(H2O)6]Br2·trans‐[Ta6Br12(OH)4(H2O)2]·18H2O ( 3 )have been solved in the triclinic space group P&1macr; (No. 2). Crystal data: 1 , a = 9.3264(2) Å, b = 9.8272(2) Å, c = 19.0158(4) Å, α = 80.931(1)?, β = 81.772(2)?, γ = 80.691(1)?; 3 , a = 9.3399(2) Å, b = 9.8796(2) Å, c = 19.0494(4) Å; α = 81.037(1)?, β = 81.808(1)?, γ = 80.736(1)?. 1 and 3 consist of two octahedral differently charged cluster entities, [Ta6Br12]2+ in the [Ta6Br12(H2O)6]2+ cation and [Ta6Br12]4+ in trans‐[Ta6Br12(OH)4(H2O)2]. Average bond distances in the [Ta6Br12(H2O)6]2+ cations: 1 , Ta‐Ta, 2.9243 Å; Ta‐Bri , 2.607 Å; Ta‐O, 2.23 Å; 3 , Ta‐Ta, 2.9162 Å; Ta‐Bri , 2.603 Å; Ta‐O, 2.24 Å. Average bond distances in trans‐[Ta6‐Br12(OH)4(H2O)2]: 1 , Ta‐Ta, 3.0133 Å; Ta‐Bri, 2.586 Å; Ta‐O(OH), 2.14 Å; Ta‐O(H2O), 2.258(9) Å; 3 , Ta‐Ta, 3.0113 Å; Ta‐Bri, 2.580 Å; Ta‐O(OH), 2.11 Å; Ta‐O(H2O), 2.23(1) Å. The crystal packing results in short O···O contacts along the c axes. Under the same experimental conditions, [Ta6Cl12]2+ oxidized to [Ta6Cl12]4+ , whereas [Nb6X12]2+ clusters were not affected by the Cu2+ ion.  相似文献   

16.
Two CoII complexes, Co(phen)(HL)2 ( 1 ) and [Co2(phen)2(H2O)4L2]·H2O ( 2 ) (H2L = HOOC‐(CH2)5‐COOH), were synthesized and structurally characterized on the basis of single crystal X‐ray diffraction data. In complex 1 the Co atoms are tetrahedrally coordinated by two N atoms of one phen ligand and two O atoms of different hydrogenpimelato ligands. Through π—π stacking interactions between carboxyl group and phen ligand, the complex molecules are assembled into 1D columnar chains, which are connected by intermolecular hydrogen bonds. Complex 2 consists of the centrosymmetric dinuclear [Co2(phen)2(H2O)4L2] molecules and hydrogen bonded H2O molecules. The Co atoms are each octahedrally surrounded by two N atoms of one phen ligand and four O atoms from two bis‐monodentate pimelato ligands and two H2O molecules at the trans positions. The results about thermal analyses, which were performed in flowing N2 atmosphere, on both complexes were discussed. Crystal data: ( 1 ) C2/c (no. 15), a = 13.491(1)Å, b = 9.828(1)Å, c = 19.392(2)Å, β = 100.648(1)°, U = 2526.9(4)Å3, Z = 4; ( 2 ) P1 (no. 2), a = 11.558(1)Å, b = 11.947(3)Å, c = 15.211(1)Å, α = 86.17(1)°, β = 75.55(1)°, γ = 69.95(1)°, U = 1910.3(3)Å3, Z = 2.  相似文献   

17.
Synthesis, Crystal Structure, Vibrational Spectra, and Normal Coordinate Analysis of (n‐Bu4N)2[PtX4(ox)], X = Cl, Br By oxidation of (n‐Bu4N)2[PtX2(ox)], X = Cl, Br, with Cl2 or Br2 in dichloromethane (n‐Bu4N)2[PtCl4(ox)] ( 1 ) and (n‐Bu4N)2[PtBr4(ox)] ( 2 ) are formed. The crystal structure of [(C5H5N)2CH2][PtCl4(ox)] (monoclinic, space group C2/m, a = 15.562(1), b = 13.779(1), c = 10.168(1)Å, ß = 128.099(9)°, Z = 4) reveals complex anions with nearly C2v point symmetry. The bond lengths in the Cl′‐Pt‐O˙ axes are Pt‐Cl′ = 2.287 and Pt‐O˙ = 2.048 and in the Cl‐Pt‐Cl axis Pt‐Cl = 2.314Å. The oxalato ligand is nearly plane with an O‐C‐C‐O torsion angle of 0.5°. In the vibrational spectra the PtX stretching vibrations are observed at 328 and 353 ( 1 ) and 201 and 212 cm—1 ( 2 ). The PtX′ modes appear at 360 and 343 ( 1 ) and 227 and 238 cm—1 ( 2 ). The PtO˙ stretching vibrations are coupled with internal modes of the oxalato ligands and appear in the range of 400—800 cm—1. Based on the molecular parameters of the X‐ray determination ( 1 ) and estimated data ( 2 ) the IR and Raman spectra are assigned by normal coordinate analysis. The valence force constants are fd(PtCl) = 2.08, fd(PtCl′) = 2.29, fd(PtBr) = 1.56, fd(PtBr′) = 2.02 and fd(PtO˙) = 2.46 ( 1 ) and 2.35 mdyn/Å ( 2 ). Taking into account increments of the trans influence a good agreement between observed and calculated frequencies is achieved. The NMR shifts are δ(195Pt) = 5623.0 ( 1 ) and 4536.1 ( 2 ).  相似文献   

18.
Conformation and Cross Linking of (CuCN)6‐Rings in Polymeric Cyanocuprates(I) equation/tex2gif-stack-8.gif [Cu2(CN)3] (n = 2, 3) The alkaline‐tricyano‐dicuprates(I) Rbequation/tex2gif-stack-9.gif[Cu2(CN)3] · H2O ( 1 ) and Csequation/tex2gif-stack-10.gif[Cu2(CN)3] · H2O ( 2 ) were synthesized by hydrothermal reaction of CuCN and RbCN or CsCN. The dialkylammonium‐tricyano‐dicuprates(I) [NH2(Me)2]equation/tex2gif-stack-11.gif[Cu2(CN)3] ( 3 ), [NH2(iPr)2]equation/tex2gif-stack-12.gif[Cu2(CN)3] ( 4 ), [NH2(Pr)2]equation/tex2gif-stack-13.gif[Cu2(CN)3] ( 5 ) and [NH2(secBu)2]equation/tex2gif-stack-14.gif[Cu2(CN)3] ( 6 ) were obtained by the reaction of dimethylamine, diisopropylamine, dipropylamine or di‐sec‐butylamine with CuCN and NaCN in the presence of formic acid. The crystal structures of these compounds are built up by (CuCN)6‐rings with varying conformations, which are connected to layers ( 1 ) or three‐dimensional zeolite type cyanocuprate(I) frameworks, depending on the size and shape of the cations ( 2 to 6 ). Crystal structure data: 1 , monoclinic, P21/c, a = 12.021(3)Å, b = 8.396(2)Å, c = 7.483(2)Å, β = 95.853(5)°, V = 751.4(3)Å3, Z = 4, dc = 2.728 gcm—1, R1 = 0.036; 2 , orthorhombic, Pbca, a = 8.760(2)Å, b = 6.781(2)Å, c = 27.113(5)Å, V = 1610.5(5)Å3, Z = 8, dc = 2.937 gcm—1, R1 = 0.028; 3 , orthorhombic, Pna21, a = 13.504(3)Å, b = 7.445(2)Å, c = 8.206(2)Å, V = 825.0(3)Å3, Z = 4, dc = 2.023 gcm—1, R1 = 0.022; 4 , orthorhombic, Pbca, a = 12.848(6)Å, b = 13.370(7)Å, c = 13.967(7)Å, V = 2399(2)Å3, Z = 8, dc = 1.702 gcm—1, R1 = 0.022; 5 , monoclinic, P21/n, a = 8.079(3)Å, b = 14.550(5)Å, c = 11.012(4)Å, β = 99.282(8)°, V = 1277.6(8)Å3, Z = 4, dc = 1.598 gcm—1, R1 = 0.039; 6 , monoclinic, P21/c, a = 16.215(4)Å, b = 13.977(4)Å, c = 14.176(4)Å, β = 114.555(5)°, V = 2922(2)Å3, Z = 8, dc = 1.525 gcm—1, R1 = 0.070.  相似文献   

19.
Synthesis, Crystal Structure, Vibrational Spectra, and Normal Coordinate Analysis of cis‐(n‐Bu4N)2[PtX2(ox)2], X = Cl, Br, I By treatment of [PtCl6]2— with C2O42— (ox2—) in water cis‐(n‐Bu4N)2[PtCl2(ox)2] ( 1 ) is formed which has been isolated by ion exchange chromatography on diethylaminoethyl cellulose. Exposure of trans‐(n‐Bu4N)2[PtX2(ox)2], X = Br and I, in dichloromethane yields cis‐(n‐Bu4N)2[PtBr2(ox)2] ( 2 ) and cis‐(n‐Bu4N)2[PtI2(ox)2] ( 3 ). The crystal structure of 3 (monoclinic, space group P21/c, a = 19.132(1), b = 14.377(1), c = 18.099(1) Å, ß = 113.734(8)°, Z = 4) reveals, that the compound crystallizes as a racemic mixture with C2 point symmetrical complex anions. The bond lengths in both I′‐Pt‐O axes are Pt‐I′ = 2.599 and Pt‐O = 2.052 and in the O—Pt—O axis Pt—O = 2.016 Å. The oxalato ligands are nearly plane with O—C—C—O torsion angles of 0.2—3.6°. In the vibrational spectra the PtX′ stretching vibrations are observed at 362 and 365 ( 1 ), 231 and 240 ( 2 ) and 172 and 183 cm—1 ( 3 ). The PtO and PtO stretching vibrations are coupled with internal modes of the oxalato ligands and appear in the range of 400—800 cm—1. Based on the molecular parameters of the X‐ray determination ( 3 ) and estimated data ( 1 , 2 ) the IR and Raman spectra are assigned by normal coordinate analysis. The valence force constants are fd(PtCl′) = 2.35, fd(PtBr′) = 2.20, fd(PtI′) = 1.81 and fd(PtO) = 2.57 ( 1 ), 2.42 ( 2 ) and 2.15 ( 3 ) and fd(PtO) = 2.65 mdyn/Å. Taking into account increments of the trans influence a good agreement between observed and calculated frequencies is achieved. The NMR shifts are δ(195Pt) = 6438.8 ( 1 ), 5988.8 ( 2 ) and 4917.3 ppm ( 3 ).  相似文献   

20.
Two novel As‐V‐O cluster supported transition metal complexes, [Zn(en)2][Zn(en)2(H2O)2][{Zn(en)(enMe)}As6V15O42(H2O)]·4H2O ( 1 ) and [Zn2(enMe)2(en)3][{Zn(enMe)2}As6V15O42(H2O)]·4H2O ( 2 ), have been hydrothermally synthesized. The single X‐ray diffraction studies reveal that both compounds consist of discrete noncentral polyoxoanions [{Zn(en)(enMe)}As6V15O42(H2O)]4? or [{Zn(enMe)2}As6V15O42(H2O)]4? cocrystallized with respective zinc coordination complexes. Interestingly, compounds 1 and 2 exhibit the first two polyoxovanadates containing As8V15O42‐(H2O)]6? cluster decorated by only one transition metal complex. Crystal data: 1 , monoclinic, P21/n, a = 14.9037(4) Å, b = 18.1243(5) Å, c = 27.6103(7) Å, β = 105.376(6)°, Z = 4; 2 monoclinic, P21/n, a = 14.9786(7) Å, b = 33.0534(16) Å, c = 14.9811(5) Å, Z = 4.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号