首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The least protonated hexamolybdoplatinate(IV) polyanion, [H2α‐PtMo6O24]6?, is isolated by using Nd3+ as a counter‐cation. Two O atoms of the central PtO6 octahedron are protonated. The Mo—Mo distances are 3.244 (2), 3.295 (2) and 3.393 (1) Å, and the Pt—Mo distances are 3.251 (1), 3.332 (2) and 3.338 (1) Å. The anion has the Pt atom on an inversion centre and has close to m symmetry, with Pt—O bond lengths in the range 2.002 (8)–2.015 (8) Å and Mo—O bond lengths in the ranges 1.689 (9)–1.747 (8), 1.890 (8)–2.037 (8) and 2.109 (8)–2.384 (8) Å.  相似文献   

2.
The crystal structure of octaguanidinium α‐silicodiplatino­decatungstate hexahydrate, (CH6N3)8[α‐SiPt2W10O40]·6H2O, has been analyzed via a high‐energy X‐ray diffraction experiment at the SPring‐8 BL04B2 beamline. The title compound contains a novel α‐Keggin heteropolyanion in which two of the addenda atoms are replaced by Pt atoms. W and Pt atoms occupy the same coordinates; the occupancy fractions are (W) and (Pt), and the α‐Keggin anion has symmetry. The two types of W(Pt)—W(Pt) distance are in the ranges 3.3565 (4)–3.3704 (4) and 3.7033 (4)–3.7100 (4) Å, the four types of W(Pt)—O bond length are in the ranges 1.721 (5)–1.725 (5), 1.910 (5)–1.932 (5), 1.934 (5)–1.956 (5) and 2.339 (4)–2.348 (4) Å, and the Si—O bond length is 1.646 (4) Å.  相似文献   

3.
The title compound can be formulated as [Cr(H2O)6][Na2(H2O)10][IMo6O24]·8H2O. The anion has the I atom on an inversion centre and has close to m symmetry, with I—O bond lengths in the range 1.881–1.890 (2) Å and Mo—O bond lengths in the ranges 1.697 (3)–1.714 (3), 1.915 (2)–1.948 (2) and 2.317 (2)–2.357 (2) Å.  相似文献   

4.
In the title compound, [Li(C5H3N4O2)(H2O)2]n, the coordinate geometry about the Li+ ion is distorted tetrahedral and the Li+ ion is bonded to N and O atoms of adjacent ligand mol­ecules forming an infinite polymeric chain with Li—O and Li—N bond lengths of 1.901 (5) and 2.043 (6) Å, respectively. Tetrahedral coordination at the Li+ ion is completed by two cis water mol­ecules [Li—O 1.985 (6) and 1.946 (6) Å]. The crystal structure is stabilized both by the polymeric structure and by a hydrogen‐bond network involving N—H?O, O—H?O and O—H?N hydrogen bonds.  相似文献   

5.
Cubic [Ta6Br12(H2O)6][CuBr2X2]·10H2O and triclinic [Ta6Br12(H2O)6]X2·trans‐[Ta6Br12(OH)4(H2O)2]·18H2O (X = Cl, Br, NO3) cocrystallize in aqueous solutions of [Ta6Br12]2+ in the presence of Cu2+ ions. The crystal structures of [Ta6Br12(H2O)6]Cl2·trans‐[Ta6Br12(OH)4(H2O)2]·18H2O ( 1 ) and [Ta6Br12(H2O)6]Br2·trans‐[Ta6Br12(OH)4(H2O)2]·18H2O ( 3 )have been solved in the triclinic space group P&1macr; (No. 2). Crystal data: 1 , a = 9.3264(2) Å, b = 9.8272(2) Å, c = 19.0158(4) Å, α = 80.931(1)?, β = 81.772(2)?, γ = 80.691(1)?; 3 , a = 9.3399(2) Å, b = 9.8796(2) Å, c = 19.0494(4) Å; α = 81.037(1)?, β = 81.808(1)?, γ = 80.736(1)?. 1 and 3 consist of two octahedral differently charged cluster entities, [Ta6Br12]2+ in the [Ta6Br12(H2O)6]2+ cation and [Ta6Br12]4+ in trans‐[Ta6Br12(OH)4(H2O)2]. Average bond distances in the [Ta6Br12(H2O)6]2+ cations: 1 , Ta‐Ta, 2.9243 Å; Ta‐Bri , 2.607 Å; Ta‐O, 2.23 Å; 3 , Ta‐Ta, 2.9162 Å; Ta‐Bri , 2.603 Å; Ta‐O, 2.24 Å. Average bond distances in trans‐[Ta6‐Br12(OH)4(H2O)2]: 1 , Ta‐Ta, 3.0133 Å; Ta‐Bri, 2.586 Å; Ta‐O(OH), 2.14 Å; Ta‐O(H2O), 2.258(9) Å; 3 , Ta‐Ta, 3.0113 Å; Ta‐Bri, 2.580 Å; Ta‐O(OH), 2.11 Å; Ta‐O(H2O), 2.23(1) Å. The crystal packing results in short O···O contacts along the c axes. Under the same experimental conditions, [Ta6Cl12]2+ oxidized to [Ta6Cl12]4+ , whereas [Nb6X12]2+ clusters were not affected by the Cu2+ ion.  相似文献   

6.
New Oxonium Bromochalcogenates(IV) — Synthesis, Structure, and Properties of [H3O][TeBr5] · 3 C4H8O2 and [H3O]2[SeBr6] Dark red crystals of the composition [H3O][TeBr5] · 3 C4H8O2 ( 1 ) were isolated from a saturated solution of TeBr4 in 1,4-dioxane containing a small amount of water. In this compound (space group P21/m, a = 8.922(4) Å, b = 13.204(7) Å, c = 9.853(5) Å, β = 91.82(4)° at 150 K) a square pyramidal [TeBr5]? anion has been isolated for the first time. The coordination sphere of the anion is completed to a distorted octahedron by weak interaction with a dioxane molecule of the cationic system. The [H3O]+ cations are connected to chains by dioxane molecules. At room temperature the compound is stable only in its mother liquor. Crystalline [H3O]2[SeBr6] ( 2 ) (space group Fm3m, a = 10.421(1) Å at 170 K) is a bromoselenous acid of high symmetry. The [H3O]+ ion is only weakly coordinated by Br atoms of the anion. The anions are isolated octahedral [SeBr6]2? units. The structure is isotypic to the K2[PtCl6] structure. Despite being a halogenochalcogen(IV) acid, 2 exhibits a remarkable thermal stability. Both oxonium compounds were characterized by single-crystal X-ray structure analyses. Vibrational spectra of 2 are reported.  相似文献   

7.
Molybdenum(II) Halide Clusters with six Alcoholate Ligands: (C18H36N2O6Na)2[Mo6Cl8(OCH3)6] · 6CH3OH and (C18H36N2O6Na)2[Mo6Cl8(OC6H5)6] . The reaction of Na2[Mo6Cl8(OCH3)6] and 2,2,2-crypt yields (C18H36N2O6Na)2[Mo6Cl8(OCH3)6] · 6 CH3OH ( 1 ), which is converted to (C18H36N2O6Na)2[Mo6Cl8(OC6H5)6] ( 2 ) by metathesis with phenol. According to single crystal structure determinations ( 1 : P3 1c, a=14.613(3) Å, c=21.036(8) Å; 2 : P3 1c, a=15.624(1) Å, c=19.671(2) Å) the compounds contain anionic clusters [Mo6Cl8i(ORa)6]2? ( 1 : d(Mo—Mo) 2.608(1) Å to 2.611(1) Å, d(Mo—Cl) 2.489(1) Å to 2.503(1) Å, d(Mo—O) 2.046(4) Å; 2 : d(Mo—Mo) 2.602(3) Å to 2.608(3) Å, d(Mo—Cl) 2.471(5) Å to 2.4992(5) Å, d(Mo—O) 2.091(14) Å). Electronic interactions of the halide cluster and the phenolate ligands in [Mo6Cl8(OC6H5)6]2? is investigated by means of UV/VIS spectroscopy and EHMO calculations.  相似文献   

8.
The novel title compound, poly­[octa‐μ‐aqua‐octa­aqua‐μ‐decavanadato‐hexalithium], contains [V10O28]6− polyanions with 2/m symmetry linked by centrosymmetric [Li6(H2O)16]6+ cation chains. The [V10O28]6− polyanions form a two‐dimensional network with [Li6(H2O)16]6+ chains via O‐polyanion–Li‐chain coordination, with Li—O bond lengths in the range 2.007 (5)–2.016 (5) Å. The hexalithium hexadecahydrate chain is composed of a centrosymmetric pair of LiO6 octahedra and four distorted LiO4 tetrahedra. Hydro­gen bonds occur between the polyanion and the Li‐based chains, and within the Li‐based chains.  相似文献   

9.
Concentrated aqueous solutions of magnesium chloride and calcium nitrate, respectively, allow on addition of the potassium salt of tetrathiosquarate, K2C4S4 · H2O, the isolation of the earth alkaline salts MgC4S4 · 6 H2O ( 1 ) and CaC4S4 · 4 H2O ( 2 ) as orange and red crystals. The crystal structure determinations ( 1 : monoclinic, C2/c, a = 17.2280(7), b = 5.9185(2), c = 13.1480(4) Å, β = 104.730(3)°, Z = 4; 2 : monoclinic, P21/m, a = 7.8515(3), b = 12.7705(5), c = 10.6010(4) Å, β = 93.228(2)°, Z = 4) show the presence of C4S42? ions with almost undistorted D4h symmetry having average C–C and C–S bond lengths of 1.451Å and 1.659Å for 1 and 1.451Å and 1.655Å for 2 . The structure of 1 contains discrete, octahedral [Mg(H2O)6]2+ complexes. Several O–H····O and O–H····S bridges with H····O and H····S distances of less than 2.50Å connect cations and anions. The structure of 2 is built of concatenated, edge‐sharing Ca(H2O)6S2 polyhedra. The Ca2+ ions have the coordination number eight, C4S42? act as a chelating ligands towards Ca2+ with Ca–S distances of 3.14Å. The infrared and Raman spectra show bands typical for the molecular building units of the two compounds.  相似文献   

10.
In the title compound, [Mn(C5H2N2O4)(C12H9N3)2]·H2O, the MnII centre is surrounded by three bidentate chelating ligands, namely, one 6‐oxido‐2‐oxo‐1,2‐dihydropyrimidine‐5‐carboxylate (or uracil‐5‐carboxylate, Huca2−) ligand [Mn—O = 2.136 (2) and 2.156 (3) Å] and two 2‐(2‐pyridyl)‐1H‐benzimidazole (Hpybim) ligands [Mn—N = 2.213 (3)–2.331 (3) Å], and it displays a severely distorted octahedral geometry, with cis angles ranging from 73.05 (10) to 105.77 (10)°. Intermolecular N—H...O hydrogen bonds both between the Hpybim and the Huca2− ligands and between the Huca2− ligands link the molecules into infinite chains. The lattice water molecule acts as a hydrogen‐bond donor to form double O...H—O—H...O hydrogen bonds with the Huca2− O atoms, crosslinking the chains to afford an infinite two‐dimensional sheet; a third hydrogen bond (N—H...O) formed by the water molecule as a hydrogen‐bond acceptor and a Hpybim N atom further links these sheets to yield a three‐dimensional supramolecular framework. Possible partial π–π stacking interactions involving the Hpybim rings are also observed in the crystal structure.  相似文献   

11.
The calcium salts Ca2P2O6 · 2H2O ( 1 ) and [Ca(H2O)3(H2P2O6)] · 0.5(C12H24O6) · H2O ( 2 ) were prepared and structurally characterized by single‐crystal X‐ray diffraction. Compound 1 crystallizes in the orthorhombic space group Pbca and compound 2 in the monoclinic space group P21/n. The crystal structure of compound 1 consists of chains of edge‐sharing [CaO7] polyhedra linked by hypodiphosphate(IV) anions to form a three‐dimensional network. The crystal structure of compound 2 consists of alternated layers of crown ether and water molecules and respective ionic units. Within the layers of ionic units the Ca2+ cations are octahedrally coordinated by three monodentate dihydrogenhypodiphosphate(IV) anions and three water molecules. The IR/Raman spectra of the title compounds were recorded and interpreted, especially with respect to the [P2O6]4– and [H2P2O6]2– groups. The phase purity of 2 was verified by powder diffraction measurements.  相似文献   

12.
Crystal Structure of Sodium Dihydrogencyamelurate Tetrahydrate Na[H2(C6N7)O3] · 4 H2O Sodium dihydrogencyamelurate‐tetrahydrate Na[H2(C6N7)O3]·4 H2O was obtained by neutralisation of an aqueous solution, previously prepared by hydrolysis of the polymer melon with sodium hydroxide. The crystal structure was solved by single‐crystal X‐ray diffraction ( a = 6.6345(13), b = 8.7107(17), c = 11.632(2) Å, α = 68.96(3), β = 87.57(3), γ = 68.24(3)°, V = 579.5(2) Å3, Z = 2, R1 = 0.0535, 2095 observed reflections, 230 parameters). Both hydrogen atoms of the dihydrogencyamelurate anion are directly bound to nitrogen atoms of the cyameluric nucleus, thus proving the preference of the keto‐tautomere in salts of cyameluric acid in the solid‐state. The compound forms a layer‐like structure with an extensive hydrogen bonding network.  相似文献   

13.
Te(OH)6 · 2Na3P3O9 · 6H2O, is hexagonal (P63/m) with a = 11,67(1), c = 12,12(1) Å, Z = 2 and Dx = 2,225 g/cm3. Te(OH)6 · K3P3O9 · 2H2O, is monoklin (P21/c) with a = 19,61(5), b = 7,456(1), c = 14,84(6) Å, = 108,01(4), Z = 4 and Dx = 2,506 g/cm3. Both compounds are the first examples of phosphate tellurates in which the anion phosphate is condensed to the ring anion P3O9. As in phosphate tellurates already described the phosphate groups are independent of the TeO6 octahedra.  相似文献   

14.
The title compound, bis[di­aqua­bis­(ethyl­enedi­amine‐κ2N,N′)copper(II)­] hexa­cyano­iron(II) tetrahydrate, [Cu(C2H8N2)2(H2O)1.935]2[Fe(CN)6]·4H2O, was crystallized from an aqueous reaction mixture initially containing CuSO4, K3[Fe(CN)6] and ethyl­enedi­amine (en) in a 3:2:6 molar ratio. Its structure is ionic and is built up of two crystallographically different cations, viz. [Cu(en)2(H2O)2]2+ and [Cu(en)2(H2O)1.87]2+, there being a deficiency of aqua ligands in the latter, [Fe(CN)6]4− anions and disordered solvent water mol­ecules. All the metal atoms lie on centres of inversion. The Cu atom is octahedrally coordinated by two chelate‐bonded en mol­ecules [mean Cu—N = 2.016 (2) Å] in the equatorial plane, and by axial aqua ligands, showing very long distances due to the Jahn–Teller effect [mean Cu—O = 2.611 (2) Å]. In one of the cations, significant underoccupation of the O‐atom site is observed, correlated with the appearance of a non‐coordinated water mol­ecule. This is interpreted as the partial contribution of a hydrate isomer. The [Fe(CN)6]4− anions form quite regular octahedra, with a mean Fe—C distance of 1.913 (2) Å. The dominant intermolecular interactions are cation–anion O—H⋯N hydrogen bonds and these inter­actions form layers parallel to (001).  相似文献   

15.
利用水热法合成了两种过渡金属配合物为模板剂的含水硼酸盐晶体Co(en)3[B4O5(OH)4]Cl·3H2O(1) 和 [Ni(en)3][B5O6(OH)4]2·2H2O (2),并通过元素分析、X射线单晶衍射、红外光谱及热重分析对其进行了表征。化合物1晶体结构的主要特点是在所有组成Co(en)33+, [B4O5(OH)4]2–, Cl– 和 H2O之间通过O–H…O、O–H…Cl、N–H…Cl和N–H…O四种氢键连接形成网状超分子结构。化合物2晶体结构的特点是[B5O6(OH)4]–阴离子通过O–H…O氢键连接形成沿a方向有较大通道的三维超分子骨架,模板剂[Ni(en)3]2+阳离子和结晶水分子填充在通道中。  相似文献   

16.
Molybdenum(II) Halide Clusters with two Alcoholate Ligands: Syntheses and Crystal Structures of (C18H36N2O6Na)2[Mo6Cl12(OCH3)2] and (C18H36N2O6Na)2[Mo6Cl12(OC15H11)2] · 2C4H6O3 . Reaction of Mo6Cl12 with two equivalents of sodium methoxide in the presence of 2,2,2-crypt yields (C18H36N2O6Na)2[Mo6Cl12(OCH3)2] ( 1 ), which can be converted to (C18H36N2O6Na)2[Mo6Cl12(OC15H11)2] · 2C4H6O3 ( 2 ) by metathesis with 9-Anthracenemethanole in propylene carbonate. As confirmed by X-ray single crystal structure determination ( 1 : C2/m, a=25.513(8) Å, b=13.001(3) Å, c=10.128(3) Å, β=100.204(12)°; : C2/c, a=15.580(5) Å, b=22.337(5) Å, c=27.143(8) Å, β=98.756(10)°) the compounds contain anionic cluster units [Mo6ClCl(ORa)2]2? with two alcoholate ligands in terminal trans positions ( 1 : d(Mo—Mo) 2.597(2) Å to 2.610(2) Å, d(Mo—Cli) 2.471(3) Å to 2.493(4) Å, d(Mo—Cla) 2.417(8) Å and 2.427(8) Å, d(Mo—O) 2.006(13) Å; 2 : d(Mo—Mo) 2.599(3) Å to 2.628(3), d(Mo—Cli) 2.468(8) Å to 2.506(7) Å, d(Mo—Cla) 2.444(8) Å and 2.445(7) Å, d(Mo—O) 2.012(19) Å).  相似文献   

17.
In the title compound, 4‐iodoanilinium 2‐carboxy‐6‐nitrobenzoate, C6H7IN+·C8H4NO6, the anions are linked by an O—H...O hydrogen bond [H...O = 1.78 Å, O...O = 2.614 (3) Å and O—H...O = 171°] into C(7) chains, and these chains are linked by two two‐centre N—H...O hydrogen bonds [H...O = 1.86 and 1.92 Å, N...O = 2.700 (3) and 2.786 (3) Å, and N—H...O = 153 and 158°] and one three‐centre N—H...(O)2 hydrogen bond [H...O = 2.02 and 2.41 Å, N...O = 2.896 (3) and 2.789 (3) Å, N—H...O = 162 and 105°, and O...H...O = 92°], thus forming sheets con­taining R(6), R(8), R(13) and R(18) rings.  相似文献   

18.
Single crystals of HgII(H4TeVIO6) (colourless to light‐yellow, rectangular plates) and HgI2(H4TeVIO6)(H6TeVIO6)·2H2O (colourless, irregular) were grown from concentrated solutions of orthotelluric acid, H6TeO6, and respective solutions of Hg(NO3)2 and Hg2(NO3)2. The crystal structures were solved and refined from single crystal diffractometer data sets (HgII(H4TeVIO6): space group Pna21, Z = 4, a =10.5491(17), b = 6.0706(9), c = 8.0654(13)Å, 1430 structure factors, 87 parameters, R[F2 > 2σ(F2)] = 0.0180; HgI2(H4TeVIO6)(H6TeVIO6)·2H2O: space group P1¯, Z = 1, a = 5.7522(6), b = 6.8941(10), c = 8.5785(10)Å, α = 90.394(8), β = 103.532(11), γ = 93.289(8)°, 2875 structure factors, 108 parameters, R[F2 > 2σ(F2)] = 0.0184). The structure of HgII(H4TeVIO6) is composed of ribbons parallel to the b axis which are built of [H4TeO6]2— anions and Hg2+ cations held together by two short Hg—O bonds with a mean distance of 2.037Å. Interpolyhedral hydrogen bonding between neighbouring [H4TeO6]2— groups, as well as longer Hg—O bonds between Hg atoms of one ribbon to O atoms of adjacent ribbons lead, to an additional stabilization of the framework structure. HgI2(H4TeVIO6)(H6TeVIO6)·2H2O is characterized by a distorted hexagonal array made up of [H4TeO6]2— and [H6TeO6] octahedra which spread parallel to the bc plane. Interpolyhedral hydrogen bonding between both building units stabilizes this arrangement. Adjacent planes are stacked along the a axis and are connected by Hg22+ dumbbells (d(Hg—Hg) = 2.5043(4)Å) situated in‐between the planes. Additional stabilization of the three‐dimensional network is provided by extensive hydrogen bonding between interstitial water molecules and O and OH‐groups of the [H4TeO6]2— and [H6TeO6] octahedra. Upon heating HgI2(H4TeVIO6)(H6TeVIO6)·2H2O decomposes into TeO2 under formation of the intermediate phases HgII3TeVIO6 and the mixed‐valent HgIITeIV/VI2O6.  相似文献   

19.
Molecules of the title compound, C5H6N4O3, are linked into a single three‐dimensional framework by a two‐centre N—H⃛O hydrogen bond [H⃛O = 1.92 Å, N⃛O = 2.785 (2) Å and N—H⃛O = 168°], a two‐centre N—H⃛H hydrogen bond [H⃛N = 2.19 Å, N⃛N = 3.017 (2) Å and N—H⃛N = 157°] and the intermolecular component of an effectively planar three‐centre N—H⃛(O)2 hydrogen bond [H⃛O = 2.03 and 2.31 Å, N⃛O = 2.645 (2) and 2.957 (2) Å, N—H⃛O = 126 and 130°, and O⃛H⃛O = 101°].  相似文献   

20.
The first example of a heteropolyoxomolybdate containing palladium(IV) was isolated and characterized by X‐ray crystallography. The palladium(IV) hexamolybdate, K0.75Na3.75[PdMo6O24H3.5]·17H2O, was isolated from an aqueous solution at pH 4.5 in the space group P\bar{1} , a 10.790(2), b 12.244(3), c 14.086(3) Å, α 113.77(1), β 90.41(1),γ 107.86(1)°, and the structure was determined using X‐ray diffraction methods, refining to a residual of 0.0301 for 5334 reflections. A formal “[PdMo6O24H3]5–” subunit exhibits the basic Anderson structure, with two [PdMo6O24H3]5– cluster anions in the structure bridged by a hydrogen atom (formally an H+) situated on a center of symmetry to give a “[Pd2Mo12O48H7]9–” dimeric anion. The palladium(IV) atom occupies a slightly distorted octahedral environment, with Pd–O distances ranging from 1.968 to 2.009 Å.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号