首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Xinyi Wang  Xiao Xu  Minghui Xiang  Feng Liu 《Talanta》2010,82(2):693-4456
The purpose of this study was to establish a simple and sensitive analytical method for lysozyme using Plasmon Resonance Light-Scattering (PRLS) technique with Gold Nanoparticles (AuNPs) as the probe. Nanomolar level of lysozyme induced AuNPs aggregation with enhanced PRLS. For 1.4 nM citrate-capped AuNPs (13 nm in diameter), the linear range of the calibration curve was 15-50 nM with a detection limit of 13.1 nM for lysozyme. Six nanomolar lysozyme can produce an observable PRLS enhancement. Most potential interfering substances present in urine had a negligible effect on the determination. The interference from human serum albumin in the urinary sample can be reduced by precipitating the albumin with ethanol at pH 4.8-4.9. The 90.1-118.2% recovery was achieved for 8 individual lysozyme-spiked urinary samples. This simple and sensitive method for lysozyme does not require sample clean-up and AuNPs modification, thus provided an alternative for urinary lysozyme determination.  相似文献   

2.
With the aids of SEM,XPS measurements,localized plasmon resonance light scattering(PRLS) spectrometry and light scattering imaging,investigations on the amalgamation process of both cetyltrimethylammonium bromide(CTAB) and citrate-coated gold nanoparticles(AuNPs) in the presence of Hg2+ showed that the Au-Hg amalgam process of gold nanoparticles is surface coating dependent in aqueous medium,and the scattering light color change of AuNPs under a dark-field microscope is blue-shifted from red-orange into yellow-orange or even yellow.The former one involves the reduction of Hg2+ to Hg0 species and adsorption of Hg0 on the surfaces of AuNPs,while the later one indicates the shape-evolution of AuNPs.  相似文献   

3.
The purpose of this study was to establish a simple, sensitive analytical method for kanamycin (KANA) in human urine. Enhancement of the plasmon resonance light-scattering (PRLS) of gold nanoparticles (AuNPs) by KANA provided the basis for this analytical method. At pH 6.7, KANA induced AuNPs aggregation with enhanced PRLS. The PRLS of the AuNPs–KANA system was further enhanced by addition of urea. The linear range and detection limit for KANA were from 20–800 nmol L−1 and 2 nmol L−1, respectively. Potential interfering substances present in urine had a negligible effect on the determination, thus preliminary sample separations were not necessary. Recovery of KANA from spiked human urine was 94–104%. This simple, sensitive method, using urea to enhance the PRLS of the AuNPs–KANA system, may provide a new approach for determination of compounds rich in OH groups.  相似文献   

4.
An enzyme-free, ultrasensitive electrochemical detection of kanamycin residue was achieved based on mimetic peroxidase activity of gold nanoparticles (AuNPs) and target-induced replacement of the aptamer. AuNPs which were synthesized using tyrosine as a reducing and capping agent, exhibited mimetic peroxidase activity. In the presence of kanamycin-specific aptamer, however, the single-stranded DNA (ssDNA) adsorbed on the surface of AuNPs via the interaction between the bases of ssDNA and AuNPs, and therefore blocked the catalytic site of AuNPs, and inhibited their peroxidase activity. While in the presence of target kanamycin, it bound with the adsorbed aptamer on AuNPs with high affinity, exposed the surface of AuNPs and recovered the peroxidase activity. Then AuNPs catalyzed the reaction between H2O2 and reduced thionine to produce oxidized thionine. The latter exhibited a distinct reduction peak on gold electrode in differential pulse voltammetry (DPV), and could be utilized to quantify the concentration of kanamycin. Under the optimized conditions, the proposed electrochemical assay showed an extremely high sensitivity towards kanamycin, with a linear relationship between the peak current and the concentration of kanamycin in the range of 0.1–60 nM, and a detection limit of 0.06 nM. Moreover, the established approach was successfully applied in the detection of kanamycin in honey samples. Therefore, the proposed electrochemical assay has great potential in the fields of food quality control and environmental monitoring.  相似文献   

5.

A label-free, rapid response colorimetric aptasensor for sensitive detection of chloramphenicol (CAP) was proposed, which was based on the strategy of ssDNA-modified gold nanoparticle (AuNP) aggregation assisted by lanthanum (La3+) ions. The AuNPs generated a color change that could be monitored in the red, green, and blue and analyzed by the smartphone imaging app. La3+, as a trigger agent, strongly combined with the phosphate groups of the surface of ssDNA-AuNPs probe, which helps create AuNP aggregation and the color change of AuNPs from red to blue. On the contrary, when mixing with CAP, the aptamer (Apt) bound to CAP to form a rigid structure of the Apt-CAP complex, and La3+ attached to the phosphate groups of the complex, which prevented the aptamer from binding to the surface of the AuNPs. As a result, the color of the AuNPs changed to violet-red. Finally, UV-vis absorption spectroscopy and the smartphone imaging app were employed to determine CAP with a lower detection limit of 7.65 nM and 5.88 nM, respectively. The proposed strategy featuring high selectivity and strong anti-interference ability for detection of CAP in practical samples was achieved. It is worth mentioning that the simple and portable colorimetric aptasensor will be used for facilitating on-site detection of food samples.

  相似文献   

6.
The authors describe a colorimetric assay for the detection of fluoroquinolones (FQs). It is based on the use of gold nanoparticles (AuNPs) modified with complementary DNA strands and analyte-specific FQ-binding aptamers. The modified AuNPs possess enzyme-like activity that can catalyze the reduction of nitrophenol by NaBH4. In the absence of ciprofloxacin, the flower-shape coating on the AuNPs prevents the reduction of yellow 4-nitrophenol. In the presence of ciprofloxacin, the DNA/aptamer flower leaves on the AuNPs and the AuNPs can exert their catalytic activity. This results in a color change from yellow to colorless. The assay is highly selective for FQs, fast (1 h), and has a limit of detection as low as 1.2 nM in case of ciprofloxacin. It was successfully applied to the determination of ciprofloxacin in spiked water, serum and milk samples to give LODs of 1.3, 2.6 and 3.2 nM, respectively.  相似文献   

7.
A facile and multi-response strategy for studying the transformations of human telomere DNA from single strand (ss) to double strand (ds) and G-quadruplex has been established by using positively charged gold nanorod (AuNR) as an optical label. The conformation change information of the telomere DNA was transferred into multiple optical signals, including changes in fluorescence emission, near infrared (NIR) absorption, plasma resonance light scattering (PRLS) and dynamic light scattering (DLS) response. The formations of dsDNA and G-quadruplex DNA induced fluorescence quenching of dye on DNA, and were accompanied by the intensity decrease and blue shift of the longitudinal absorption peak of AuNRs. Meanwhile, PRLS and DLS results revealed slightly increased AuNR aggregation due to increased charge density of dsDNA and G-quadruplex DNA as compared to ssDNA. Control experiment suggests that the AuNR-based assay is highly sequence specific; and the high sensitivity allows the study of human telomere DNA at a concentration as low as 58 nM.  相似文献   

8.
It was found that multi-walled carbon nanotubes (MWNTs) could catalyze the redox reaction between chlorauric acid (HAuCl4) and reductive drugs such as tetracycline hydrochloride (TC), producing gold nanoparticles (Au NPs). By measuring the plasmon resonance light scattering (PRLS) signals of the resulting Au NPs, tetracycline hydrochloride can be detected simply and rapidly with a linear range of 4―26 μmol/L, a correlated coefficient (r ) of 0.9955, and a limit of detection (3σ) of 6.0 nmol/L. This method has been successfully applied to the detection of tetracycline hydrochloride tablets in clinic with the recovery of 101.9% and that of fresh urine samples with the recovery of 98.3%―102.0%.  相似文献   

9.
An ultrasensitive surface enhanced Raman scattering (SERS) method has been designed to selectively and sensitively detect lysozyme. The gold chip as the detection substrate, the aptamer‐based target‐triggering cascade multiple cycle amplification, and gold nanoparticles (AuNPs) bio‐barcode Raman probe enhancement on the gold substrate are employed to enhance the SERS signals. The cascade amplification process consists of the nicking enzyme signaling amplification (NESA), the strand displacement amplification (SDA), and the circular‐hairpin‐assisted exponential amplification reaction (HA‐EXPAR). With the involvement of an aptamer‐based probe, two amplification reaction templates, and a Raman probe, the whole circle amplification process is triggered by the target recognition of lysozyme. The products of the upstream cycle (NESA) could act as the “DNA trigger” of the downstream cycle (SDA and circular HA‐EXPAR) to generate further signal amplification, resulting in the immobility of abundant AuNPs Raman probes on the gold substrate. “Hot spots” are produced between the Raman probe and the gold film, leading to significant SERS enhancement. This detection method exhibits excellent specificity and sensitivity towards lysozyme with a detection limit of 1.0×10?15 M . Moreover, the practical determination of lysozyme in human serum demonstrates the feasibility of this SERS approach in the analysis of a variety of biological specimens.  相似文献   

10.
A sensitive and convenient strategy was developed for label-free assay of adenosine. The strategy adapted the fluorescence resonance energy transfer property between Rhodamine B doped fluorescent silica nanoparticles (SiNPs) and gold nanoparticles (AuNPs) to generate signal. The different affinities of AuNPs toward the unfolded and folded aptamers were employed for the signal transfer in the system. In the presence of adenosine, the split aptamer fragments react with adenosine to form a structured complex. The folded aptamer cannot be adsorbed on the surface of AuNPs, which induces the aggregation of AuNPs under high ionic concentration conditions, and the aggregation of AuNPs leads to the decrease of the quenching ability. Therefore, the fluorescence intensity of Rhodamine B doped fluorescent SiNPs increased along with the concentration of adenosine. Because of the highly specific recognition ability of the aptamer toward adenosine and the strong quenching ability of AuNPs, the proposed strategy demonstrated good selectivity and high sensitivity for the detection of adenosine. Under the optimum conditions in the experiments, a linear range from 98 nM to 100 μM was obtained with a detection limit of 45 nM. As this strategy is convenient, practical and sensitive, it will provide a promising potential for label-free aptamer-based protein detection.  相似文献   

11.
Using citric acid (CA) and ethylenediamine (EDA) as precursors, stable nitrogen-doped carbon dots (CD) nanosols were prepared by microwave procedure and characterized in detail. It was found that CDNs catalyze ethanol (Et)-HAuCl4 to generate gold nanoparticles (AuNPs), which have strong surface plasmon resonance, Rayleigh scattering, (RRS) and a surface plasmon resonance (SPR) absorption (Abs) effect at 370 nm and 575 nm, respectively. Compled the new catalytic amplification indicator reaction with the specific As3+ aptamer reaction, a new RRS/Abs dual-mode aptamer sensor for the assay of trace As3+ was developed, based on the RRS/Abs signals increasing linearly with As3+ increasing in the ranges of 5–250 nmol/L and 50−250 nmol/L, whose detection limits were 0.8 nmol/L and 3.4 nmol/L As3+, respectively. This analytical method has the advantages of high selectivity, simplicity, and rapidity, and it has been successfully applied to the detection of practical samples.  相似文献   

12.
The authors describe an aptasensor for visual and fluorescent detection of lysozyme via an inner filter effect (IFE). The assay is based on the fact that red gold nanoparticles (AuNPs) act as powerful absorbers of the green fluorescence of CdTe because of spectral overlap. If the lysozyme-binding aptamer is adsorbed onto the surface of the AuNPs, the salt-induced aggregation of AuNPs (that leads to a color change from red to blue) does not occur and the IFE remains efficient. If lysozyme is present, it will bind the aptamer and thereby prevent its adsorption on the AuNPs. As a result, the salt-triggered aggregation of the AuNPs will occur. Consequently, color will change from red to blue, and green fluorescence will pop up because the IFE is suppressed. Under optimum conditions, fluorescence is linearly related to lysozyme concentration in the 1.0 nM to 20 nM concentration range, with a 0.55 nM limit of detection. The method is perceived to be of wider applicability in that it may be used to design other visual and fluorescent assays if appropriate aptamers are available.
Graphical abstract The fluorescence intensity of QDs is quenched by gold nanoparticles (AuNPs) due to an inner filter effect. Aptamers can adsorb on AuNPs to prevent the salt-induced aggregation. AuNPs serve a dual function as fluorescence quencher and colorimetric reporter.
  相似文献   

13.
A gold nanoparticle based dual fluorescence–colorimetric method was developed as an aptasensor to detect ampicillin using its single-stranded DNA (ssDNA) aptamer, which was discovered by a magnetic bead-based SELEX technique. The selected aptamers, AMP4 (5′-CACGGCATGGTGGGCGTCGTG-3′), AMP17 (5′-GCGGGCGGTTGTATAGCGG-3′), and AMP18 (5′-TTAGTTGGGGTTCAGTTGG-3′), were confirmed to have high sensitivity and specificity to ampicillin (K d, AMP7 = 9.4 nM, AMP17 = 13.4 nM, and AMP18 = 9.8 nM, respectively). The 5′-fluorescein amidite (FAM)-modified aptamer was used as a dual probe for observing fluorescence differences and color changes simultaneously. The lower limits of detection for this dual method were a 2 ng/mL by fluorescence and a 10 ng/mL by colorimetry for ampicillin in the milk as well as in distilled water. Because these detection limits were below the maximum residue limit of ampicillin, this aptasensor was sensitive enough to detect antibiotics in food products, such as milk and animal tissues. In addition, this dual aptasensor will be a more accurate method for antibiotics in food products as it concurrently uses two detection methods: fluorescence and colorimetry.  相似文献   

14.
In this contribution, a plasmon resonance light scattering (PRLS) detection method of ferulic acid (FA) is proposed based on the formation of silver nanoparticles (NPs). It was found that, FA acted as a reducing agent in alkaline medium and could be oxidized by AgNO3, resulting in the formation of silver NPs. The formed silver NPs, which were identified by measuring the plasmon resonance absorption spectra, PRLS spectra and transmission electron microscopy (TEM) image, display characteristic plasmon resonance optical absorption and PRLS band in the visible region. It was found that the PRLS intensity, which could be easily measured using a common spectrofluorometer, was in proportion to the concentration of FA over the range from 0.2 to 2.0 μmol l−1 with the corresponding limits of determination (3σ) of 15.2 nmol l−1. With that, ferulate sodium injection samples have been detected with R.S.D. lower than 3.0% and recoveries over the range of 101.2–104.5%. On the other hand, the present reaction maybe provides the basis of an environmentally friendly approach for the synthesization of silver NPs.  相似文献   

15.
Antibody binding to bovine serum albumin (BSA) and human serum albumin (HSA) immobilized onto gold nanoparticles was studied by means of localized surface plasmon resonance (LSPR) spectroscopy. Amine-modified glass was prepared by self-assembly of amine-terminated silane on substrate, and gold (Au) nanoparticles were deposited on the amine-modified glass substrate. Au nanoparticles deposited on the glass surface were functionalized by BSA and HSA. BSA immobilization was confirmed by LSPR spectroscopy in conjunction with surface-enhanced Raman scattering spectroscopy. Then, LSPR response attributable to the binding of anti-BSA and anti-HSA to BSA- and HSA-functionalized Au nanoparticles, respectively, was examined. Anti-HSA at levels larger than ∼10 nM could be detected by HSA-immobilized chips with LSPR optical response, which was saturated at concentrations greater than ∼650 nM of anti-HSA. Electronic supplementary material Supplementary material is available in the online version of this article at and is accessible to authorized users.  相似文献   

16.
Y Wu  L Liu  S Zhan  F Wang  P Zhou 《The Analyst》2012,137(18):4171-4178
This paper reports the colorimetric and resonance scattering (RS)-based biosensor for the ultrasensitive detection of As(iii) in aqueous solution via aggregating gold nanoparticles (AuNPs) by the special interactions between arsenic-binding aptamer, target and cationic surfactant. Aptamers and the cationic surfactant could assemble to form a supramolecule, which prevented AuNPs from aggregating due to the exhaustion of cationic surfactant. The introduction of As(iii) specifically interacted with the arsenic-binding aptamer to form the aptamer-As(iii) complex, so that the following cationic surfactant could aggregate AuNPs and cause the remarkable change in color and RS intensity. The results of circular dichroism (CD) and scanning probe microscope (SPM) testified to the formation of the supramolecule and aptamer-As(iii) complex, and the observation of transmission electron microscope (TEM) further confirmed that the aggregation of AuNPs could be controlled by the interactions among the aptamer, As(iii) and cationic surfactant. The variations of absorbance and RS intensity were exponentially related to the concentration of As(iii) in the range from 1 to 1500 ppb, with the detection limit of 40 ppb for the naked eye, 0.6 ppb for colorimetric assay and 0.77 ppb for RS assay. Additionally, the speed of the present biosensor was rapid, and it also exhibited high selectivity over other metal ions with an excellent recovery for detection in real water samples, suggesting that the proposed biosensor will play an important role in environmental detection.  相似文献   

17.
Herein, we present a fast and sensitive biosensor for detection of Ochratoxin A (OTA) in a red wine that utilizes gold nanoparticle-enhanced surface plasmon resonance (SPR). By combining an indirect competitive inhibition immunoassay and signal enhancement by secondary antibodies conjugated with gold nanoparticles (AuNPs), highly sensitive detection of low molecular weight compounds (such as OTA) was achieved. The reported biosensor allowed for OTA detection at concentrations as low as 0.75 ng mL−1 and its limit of detection was improved by more than one order of magnitude to 0.068 ng mL−1 by applying AuNPs as a signal enhancer. The study investigates the interplay of size of AuNPs and affinity of recognition elements affecting the efficiency of the signal amplification strategy based on AuNP. Furthermore, we observed that the presence of polyphenolic compounds in wine samples strongly interferes with the affinity binding on the surface. To overcome this limitation, a simple pre-treatment of the wine sample with the binding agent poly(vinylpyrrolidone) (PVP) was successfully applied.  相似文献   

18.
苏小东  贾云  李毅 《应用化学》2010,27(12):1474-1477
利用抗坏血酸(VC)还原银氨溶液生成具有强烈等离子体共振散射特性的银纳米粒子,导致体系共振光散射信号的增强,散射最大峰位于544 nm。 在最佳条件下,体系的共振散射强度与抗坏血酸浓度在0.2~7.0 μmol/L范围内呈线性关系,相关系数为0.9988,检出限为8.1 nmol/L。 抗坏血酸的氧化产物能与银纳米粒子相互作用使之分散均匀且保持稳定,因此该体系不需要添加稳定剂或分散剂。 以此建立了用银纳米粒子为探针的测定抗坏血酸的高灵敏、简捷的共振散射新方法。 同时讨论了最佳反应条件和其它影响因素。 该方法用于VC片及饮料中抗坏血酸的测定,加标回收率在94.5%~97.0%之间。 结果表明,方法具有操作简单,灵敏度高和回收率较好等优点。  相似文献   

19.
A highly sensitive square‐wave voltammetric thrombin (TB) aptamer sensor was developed using functional polydopamine (PD) film by doping and depositing gold nanoparticles into the bulk and the surface of PD. The aptamer sensor was fabricated by immobilizing a thiolated TB‐binding aptamer (TBA) on the AuNPs‐doped/deposited PD film. AuNPs‐supported methylene blue labels were used for the detection of human α‐TB. Under the optimized conditions, the aptamer sensor’s dynamic range and the detection limit were determined to be 2.0 pM–50 nM and 0.97±0.06 pM, respectively. Finally, the proposed aptamer sensor was successfully examined in human serum samples and satisfactory results were obtained.  相似文献   

20.
Liqing Wang  Pingang He 《Talanta》2009,79(3):557-154
In this protocol, a fluorescent aptasensor based on magnetic separation for simultaneous detection thrombin and lysozyme was proposed. Firstly, one of the anti-thrombin aptamer and the anti-lysozyme aptamer were individually immobilized onto magnetic nanoparticles, acting as the protein captor. The other anti-thrombin aptamer was labeled with rhodamine B and the anti-lysozyme aptamer was labeled with fluorescein, employing as the protein report. By applying the sandwich detection strategy, the fluorescence response at 515 nm and 578 nm were respectively corresponding to lysozyme and thrombin with high selectivity and sensitivities. The fluorescence intensity was individually linear with the concentration of thrombin and lysozyme in the range of 0.13-4 nM and 0.56-12.3 nM, and the detection limits were 0.06 nM of thrombin and 0.2 nM of lysozyme, respectively. The preliminary study on simultaneous detection of thrombin and lysozyme in real plasma samples was also performed. It shows that the proposed approach has the good character for simultaneous multiple protein detection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号