首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
采用微扰密度矩阵和瞬态线性极化率理论,自编计算机程序,模拟了液相LDS698染料分子第一激发电于态S1的飞秒受激辐射荧光亏蚀谱,初步定量地确定了该分子S1态的超快振动弛豫速率以及S1与S0态间的Huang-Rhys因子,通过理论分析确认,测量的受激辐射荧光亏蚀谱,前面一段快速增加的信号主要反映了S1态的超快振动弛豫过程,后一段慢增加的信号主要反映了激发态的溶剂化过程.  相似文献   

2.
A new 2-D variational method is proposed to calculate the vibrational energy levels of the symmetric P-H stretching vibration (v1) and the symmetric umbrella vibration (inversion vibration) (v2) of PH3+(X2A2") that has the tunneling effect. Because the symmetric internal Cartesian coordinates were employed in the calculations, the kinetic energy operator is very simple and the inversion vibrational mode is well characterized. In comparison with the often used 1-D model to calculate the inversion vibrational energy levels, this 2-D method does not require an assumption of reduced mass, and the interactions between the v1 and v2 vibrational modes are taken into consideration. The calculated vibrational energy levels of PH3+ are the first reported 2-D calculation, and the average deviation to the experimental data is less than 3 cm-1 for the first seven inversion vibrational energy levels. This method has also been applied to calculate the vibrational energy levels of NH3. The application to NH3 is less successful, which shows some limitations of the method compared with a full dimension computation.  相似文献   

3.
Collisional vibrational relaxation of several vibrational levels of the A2Π state of CN has been investigated. A given excited level is prepared by cw dye laser excitation in the A2Π-X2Σ+ band system in a discharge-flow apparatus. The resulting fluorescence from the initially prepared and collisionally populated vibrational levels is observed as a function of rare gas pressure (Ar or He, 1–7 Torr). CollisionaI transfer rates for Δυ = ?1 transitions are extracted with the aid of a steady-state kinetic model. Emission from lower vibrational levels was also observed but could be explained by cascade processes, rather than direct Δυ > 1 collisional transitions.  相似文献   

4.
In this work, using our vibrational variational calculation method and a recently derived refined quartic potential energy surface for S0 thiophosgene, we have carried out large scale vibrational calculations to analyze the vibrational structure of this electronic state in the whole range of vibrational excitation energies down from the origin and up to the dissociation limit (at ↼20,000 cm↙1). In the lower excited vibrational range we have achieved satisfactory coincidence of calculated to experimentally measured frequencies, while at the higher vibrational excitations our main objective has been to estimate what part of the available vibrational level density is effectively involved into the vibrational mixing and IVR. The results from our calculations have been compared to the available experimentally obtained dataset (obtained from synchrotron IR, SEP and LIF spectra) as well as to conclusions from the analyses by other authors using local coupling models.  相似文献   

5.
The vibrational relaxation of the bending mode of HDO in liquid D2O has been studied using time-resolved mid-infrared pump-probe spectroscopy. At short delays, the transient spectrum clearly shows the v = 1 --> 2 induced absorption and v = 1 --> 0 bleaching and stimulated emission, whereas at long delays, the transient spectrum is dominated by the spectral changes caused by the temperature increase in the sample after vibrational relaxation. From the decay of the v = 1 --> 2 induced absorption, we obtain an estimate of 390 +/- 50 fs for the vibrational lifetime, in surprisingly good agreement with recent theoretical predictions. In the v = 0 --> 1 frequency region, the decay of the absorption change involves a second, slower component, which suggests that after vibrational relaxation the system is not yet in thermal equilibrium.  相似文献   

6.
The rotational-temperature dependence of the energy-resolved fluorescence, combined with the calculated level density, indicates that the large variations in the rate of the intramolecular vibrational relaxation over a small excess energy in S1 perylene is due to the fluctuations in the density of accessible vibrational levels, resulting from the vibrational selection rules for second-order Coriolis coupling.  相似文献   

7.
The vibrational spectra of 2,3-dihydrofuran and 2,5-dihydrofuran have been recorded using IR and Raman spectroscopy for the gas, liquid and solid states. A vibrational assignment consisting of a nearly complete set of vapor phase wavenumbers is proposed for both molecules based on the observed spectra and normal coordinate analyses. The normal coordinate analyses have been made by scaling the AM1 force field for each molecule with scale factors transferred from an analysis of the cyclopentene fundamental vibrations. The predicted a priori vibrational frequencies justify one reassignment of the fundamentals for 2,5-dihydrofuran from that previously reported. The vibrational assignment for 2,3-dihydrofuran is reported for the first time. Thermodynamic functions are computed for each molecule using the experimentally determined vibrational frequencies.  相似文献   

8.
An alternative procedure for the calculation of highly excited vibrational levels in S0 formaldehyde was developed to apply to larger molecules. It is based on a new set of symmetrized vibrational valence coordinates. The fully symmetrized vibrational kinetic energy operator is derived in these coordinates using the Handy expression [Molec. Phys. 61, 207 (1987)]. The potential energy surface is expressed as a fully symmetrized quartic expansion in the coordinates. We have performed ab initio electronic computations using GAMESS to obtain all force constants of the S0 formaldehyde quartic force field. Our large scale vibrational calculations are based on a fully symmetrized vibrational basis set, in product form. The vibrational levels are calculated one by one using an artificial intelligence search/selection procedure and subsequent Lanczos iteration, providing access to extremely high vibrational energies. In this work special attention has been given to the CH stretch system by calculating the energies up to the fifth CH stretch overtone at ∼16000 cm−1, but the method has also been tested on two highly excited combination levels including other lower frequency modes.   相似文献   

9.
The increases in the populations of the vibrational levels v = 1 to v = 5 in CO which is undergoing thermal vibrational relaxation at 2100 K have been monitored using a cw CO laser. The experiments have been carried out in a very narrow temperature range for mixtures of CO, Ar and He. Under these conditions the first part of the relaxation region is clearly visible, and it has been possible to compare the population growths of different vibrational levels under the same conditions. We have shown that the curve for the increase in the population of the level v = 1 with time is clearly different from those of the higher levels. It has been shown that all of the vibrational levels studied in this work on CO relax with a common vibrational temperature, as postulated in the model of Shuler and co-workers. The results reported here are qualitatively different from those presented by Chow and Greene on HI.  相似文献   

10.
The A3Pi1u<--X1Sigmag+ photoacoustic spectrum of Br2 vapor has been studied and vibronic analysis performed using earlier data available for this system of bands from optical spectroscopy in the region 665-720 nm. The vibronic levels involved in these transitions are 4< or =v'< or =21 and 1< or =v'< or =4. The relative photoacoustic intensities of the vibronic bands have been used in estimating the non-radiative relaxation rate from vibrational levels of A3Pi(1u) state. The non-radiative relaxation is found to be a nonlinear function of the upper state vibrational quantum number. The radiative rate constants for the A3Pi(1u) state vibrational levels have been compared with the corresponding non-radiative constants obtained from present work. Non-radiative decay rate constants for the vibrational levels of A3Pi(1u) state have been experimentally determined for the first time from photoacoustic spectrum of Br2 vapor in the extreme red region.  相似文献   

11.
An ab initio calculation of dichroic vibrational band intensities has been performed for the n-π1 transition of the carbonyl group in acetaldehyde (as a model compound) in a rigid asymmetric conformation. Results show a 10% contribution of vibrational effects adding to the electronic contributions. Different signs are effectively obtained according to the vibrational bands, which is promising for further applications. Concerning the method itself, results are analogous to those obtained for oscillator strengths.  相似文献   

12.
Three-dimensional quantum mechanical calculations for vibrational predissociation of He12(B) van der Waals molecules are presented using the time-dependent wave packet technique within the golden rule approximation. The total and partial decay widths, lifetimes, rates and their dependence on initial vibrational states were obtained for HeI2 at low initial vibrational excited levels. Our calculations show that the calculated total decay widths, lifetimes and rates agree well with those extrapolated from experimental data available. The predicted total decay widths as a function of initial vibrational states exhibit highly nonlinear behavior. The very short propagation time (less than 1 ps) required in the golden rule wave packet calculation is determined by the duration time of the final state interaction between the fragments on the vibrationally deexcited adiabatic potential surface. The final state interaction between the fragments is shown to play an important role in determining the final rotational distribution. This interpretation clearly explains the dynamical effect that the final rotational distribution shifts to the lower rotational energy levels as the initial vibrational quantum numberu increases.  相似文献   

13.
An optical Kerr shuttered spectrograph has been used to time resolve the spontaneous fluorescence of aromatic mixed crystal systems at low temperature with moderate resolution. Transient effects on the fluorescence of anthracene in naphthalene excited with 614 cm?1 vibrational excess energy in 1B2u have been observed that may signal measurable vibrational relaxation pathways. A model consistent with these observations is presented: it implicates a strong interaction between the intramolecular Franck—Condon and non-Franck—Condon modes in the relaxation process for specific excitation in the region of large excess lattice energy. Examination of the fluorescence for several aromatic systems integrated over the interval 0 to 30 ps following excitation high in the S1 vibrational manifold failed to reveal evidence of non-Boltzmann vibrational distributions, although other largely unexplained effects have been observed.  相似文献   

14.
In the present study, anharmonic vibrational properties of the amide modes in N-methylacetamide (NMA), a model molecule for peptide vibrational spectroscopy, are examined by DFT calculations. The 3N-6 normal mode frequencies, diagonal and off-diagonal anharmonicities are evaluated by means of the second order vibrational perturbation theory (VPT2). Good performance of B3LYP/6-31+G** is found for predicting vibrational frequencies in comparison with gas phase experimental data. The amide vibrational modes are assigned through potential energy distribution analysis (PED). The solvation effect on the amide vibrational modes is modeled within the PCM method. From gas phase to polar solvents, red shifts are observed for both harmonic and anharmonic vibrational frequency of amide I mode while the CO bond length increases upon the solvent polarity. Cubic and quartic force constants are further calculated to evaluate the origin of the anharmonicity for the amide I mode of NMA in different micro-environments.  相似文献   

15.
Deprotonated thymine can exist in two different forms, depending on which of its two N sites is deprotonated: N1[T–H] or N3[T–H]. Here we report a photodetachment study of the N1[T–H] isomer cooled in a cryogenic ion trap and the observation of an excited dipole-bound state. Eighteen vibrational levels of the dipole-bound state are observed, and its vibrational ground state is found to be 238 ± 5 cm–1 below the detachment threshold of N1[T–H]. The electron affinity of the deprotonated thymine radical (N1[T–H]˙) is measured accurately to be 26 322 ± 5 cm–1 (3.2635 ± 0.0006 eV). By tuning the detachment laser to the sixteen vibrational levels of the dipole-bound state that are above the detachment threshold, highly non-Franck–Condon resonant-enhanced photoelectron spectra are obtained due to state- and mode-selective vibrational autodetachment. Much richer vibrational information is obtained for the deprotonated thymine radical from the photodetachment and resonant-enhanced photoelectron spectroscopy. Eleven fundamental vibrational frequencies in the low-frequency regime are obtained for the N1[T–H]˙ radical, including the two lowest-frequency internal rotational modes of the methyl group at 70 ± 8 cm–1 and 92 ± 5 cm–1.  相似文献   

16.
The valence force field obtained for Cu porphin from the solution of the inverse spectral problem is used for calculating normal vibrations of Cu octamethylporphin and Cu octaethylporphin and their isotope-substituted derivatives (1H-2H, 14N-15N). The interpretation of vibrational spectra of octamethylporphin and octaethylporphin metal complexes is given. Insufficient presentation of vibrational modes in terms of potential energy distribution to predict isotope shifts of vibrational frequencies is noted.  相似文献   

17.
The changes in the vibrational frequencies of 1-tert-butyl and 1,2-di-tert-butyl derivatives of 3,3-dimethylcyclopropene brought about by substitution of the central carbon atom (X) of the tert-butyl moieties by Si, Ge, Sn, or Pb atoms are examined. The most important decrease in the vibrational frequencies implicating the X(CH(3))(3) moieties is noted for substitution of X=C by Si. The substitutions of Si by Ge or Ge by Sn or Sn by Pb are not accompanied by the pronounced frequency shifts observed for the C-->Si transition. An explanation is given for trends in these vibrational frequencies for the transitions X=C-->Si-->Ge-->Sn-->Pb. It is concluded that there are lower limiting values of the vibrational frequencies of a molecular moiety which are approached when the mass of its isovalent atom is increased. This leads to the formation of cluster regions in the vibrational spectra for the frequencies of the SnC(3) and PbC(3) moieties.  相似文献   

18.
A chemical timing (CT) method for measuring absolute rate constants for collisional vibrational relaxation has been tested for the 5(1) state of S(1) p-difluorobenzene (pDFB) where an alternative method exists to provide benchmark values. The CT method was originally developed to treat vibrational energy transfer (VET) in large molecules excited to high vibrational levels where the intramolecular vibrational redistribution (IVR) resulting from large vibrational state densities completely eliminates vibrational structure in the emission spectrum. Here we apply the same method to a low-lying state (5(1) with epsilon(vib) = 818 cm(-1)) located in the low-density region of the vibrational manifold where IVR plays no role. For high vibrational levels, the chemical timing method involves addition of high O(2) pressures (kTorr) to a low-pressure pDFB sample, introducing vibrational structure in the fluorescence spectrum. Response of this spectrum to vibrational relaxation by Ar is then examined. For levels such as 5(1), the fully structured fluorescence spectrum allows the rate constant for single-collision VET into the surrounding vibrational field to be measured directly without the presence of O(2). The measurements of 5(1) VET have been repeated with various O(2) pressures (kTorr) for comparison with the O(2)-free benchmark. In the presence of O(2), the rate constant for VET by Ar is (4.0 +/- 0.5) x 10(6) Torr(-1) s(-1) and independent of high O(2) pressure variations. The rate constant as found by the standard O(2)-free method is (3.6 +/- 0.4) x 10(6) Torr(-1) s(-1). This comparison suggests that the chemical timing method is capable of providing a reasonably accurate measure of the VET rate constant for high vibrational levels provided that details of the kinetics are known.  相似文献   

19.
Gas-phase azulene molecules were prepared with 17200 cm?1 vibrational energy in the S0 state by laser excitation of the S1 state and subsequent internal conversion. Rates of vibrational energy removal (for several collision partners) were determined from the decay of the CH-stretch fluorescence at 3.3 μm. A stepladder model indicates each azulene-azulene collision removes 3500 cm?1 of vibrational energy.  相似文献   

20.
High-resolution photofragment translational spectroscopy is used in this work to measure the translational and internal energy distributions in the CD3 and iodine fragments produced from the photodissociation of CD3I at 266 and 304 nm. Channel selected detection, via resonantly enhanced multiphoton ionization, combined with one-dimensional core sampling provides detailed information about vibrational state distributions of the CD3 fragments. The vibrational state distributions of CD3 fragments in the I*(2P12) channel have a propensity of nu2 ' umbrella bending mode with a maximum at nu2 ' = 1 for 266 nm photodissociation. For I*(2P12) channel at 304 nm photodissociation, vibrational state distributions of CD3 fragment have a maximum in the vibrational ground state. For the I(2P32) channel (1Q1 <-- 3Q(0+)), nu2 ' umbrella bending vibrational distribution is measured as the predominant vibrational mode but has a much broader distribution when compared to that of the I* channel. The vibrational state distributions of the CD3 fragment produced from the perpendicular transition, i.e., 3Q1, which was determined at 304 nm photodissociation, has a maximum at nu2 ' = 1. The curve crossing possibility between the 1Q1 and 3Q(0+) adiabatic potentials is determined as 0.19 for 266 and 0.85 for 304 nm. The trend in reaction dynamics in 266 and 304 nm photodissociation of CD3I is compared with theoretical calculations. A bond dissociation energy D0(C-I) = 56.60+/-0.5 kcal/mol was derived by applying laws of energy conservation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号