首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 817 毫秒
1.
A mathematical model was developed to describe the behavior of Herschel-Bulkley fluids in a back extrusion (annular pumping) device. A technique was also developed to determine the rheological properties (yield stress, flow behavior index, and consistency coefficient) of these fluids. Mathematical terms were expressed in four dimensionless terms, and graphical aids and tables were prepared to facilitate the handling of the expressions.Nomenclature a radius of the plunger, m - dv/dr shear rate, s–1 - F force applied to the plunger, N - F b buoyancy force, N - F cb force corrected for buoyancy, N - F T recorded force just before the plunger is stopped, N - F Te recorded force after the plunger is stopped, N - g acceleration due to gravity, m/s2 - H(t) momentary height between plunger and container bottom, m - K a/R, dimensionless - L length of annular region, m - L(t) depth of plunger penetration, m - n flow behavior index, dimensionless - p static pressure, Pa - P L pressure in excess of hydrostatic pressure at the plunger base, Pa - p 0 pressure at entrance to annulus, Pa - P pressure drop per unit of length, Pa/m - Q total volumetric flow rate through the annulus, m3/s - r radial coordinate, measured from common axis of cylinder forming annulus, m - R radius of outer cylinder of annulus, m - s reciprocal of n, dimensionless - t time, s - T dimensionless shear stress, defined in Eq. (3) - T 0 dimensionless yield stress, defined in Eq. (4) - T w dimensionless shear stress at the plunger wall - p velocity of plunger, m/s - velocity, m/s - mass density of fluid, kg/m3 - Newtonian viscosity, Pa s - P p 0 p L , Pa - consistency coefficient, Pa sn - value of where shear stress is zero - , + limits of the plug flow region (Fig. 1) - r/R - shear stress, Pa - y yield stress, Pa - w shear stress at the plunger wall, Pa - dimensionless flow rate defined in Eq. (24) - dimensionless velocity defined by Eq. (5) - , + dimensionless velocity outside the plug flow region - max dimensionless maximum velocity in the plug flow region - p dimensionless velocity at the plunger wall  相似文献   

2.
Summary The rigorous binary viscosity expression mix as transformed to the form originally suggested by Sutherland is studied for mixtures involving polar gases. Any attempt to simplify the ij of the Sutherland viscosity expression turns out to be only approximately successful. A relation for ij / ji is however derived, and the procedure suggested for computing mix on this basis appears to be very successful. The ij to a large extent are temperature and composition independent and it has been shown that this fact can be utilised with success for predicting mix values at high temperatures.  相似文献   

3.
This paper presents a new formulation for the laminar free convection from an arbitrarily inclined isothermal plate to fluids of any Prandtl number between 0.001 and infinity. A novel inclination parameter is proposed such that all cases of the horizontal, inclined and vertical plates can be described by a single set of transformed equations. Moreover, the self-similar equations for the limiting cases of the horizontal and vertical plates are recovered from the transformed equations by setting=0 and=1, respectively. Heated upward-facing plates with positive and negative inclination angles are investigated. A very accurate correlation equation of the local Nusselt number is developed for arbitrary inclination angle and for 0.001 Pr .
Wärmeübertragung bei freier Konvektion an einer isothermen Platte mit beliebiger Neigung
Zusammenfasssung Diese Untersuchung stellt eine neue Formulierung der laminaren freien Konvektion von Flüssigkeiten mit einer Prandtl-Zahl zwischen 0,001 und unendlich an einer beliebig schräggestellten isothermen Platte dar. Ein neuer Neigungsparameter wird eingeführt, so daß alle Fälle der horizontalen, geneigten oder vertikalen Platte von einem einzigen Satz transformierter Gleichungen beschrieben werden können. Die unabhängigen Gleichungen für die beiden Fälle der horizontalen and vertikalen Platte wurden für=0 und=1 aus den transformierten Gleichungen wieder abgeleitet. Es wurden erwärmte aufwärtsgerichtete Platten mit positiven und negativen Neigungswinkeln untersucht. Eine sehr genaue Gleichung wurde für die lokale Nusselt-Zahl bei beliebigen Neigungswinkeln und für 0,001 Pr entwickelt.

Nomenclature C p specific heat - f reduced stream function - g gravitational acceleration - Gr local Grashof number,g(T w T w ) x3/v2 - h local heat transfer coefficient - k thermal conductivity - n constant exponent - Nu local Nusselt number,hx/k - p pressure - Pr Prandtl number, v/ - Ra local Rayleigh number,g(T w T )J x3/v - T fluid temperature - T w wall temperature - T temperature of ambient fluid - u velocity component in x-direction - v velocity component in y-direction - x coordinate parallel to the plate - y coordinate normal to the plate Greek symbols thermal diffusivity - thermal expansion coefficient - (Ra¦sin¦)1/4/( Ra cos()1/5 - pseudo-similarity variable, (y/) - dimensionless temperature, (TT )/(T wT ) - ( Ra cos)1/5+(Rasin)1/4 - v kinematic viscosity - 1/[1 +(Ra cos)1/5/( Ra¦sin)1/4] - density of fluid - Pr/(1+Pr) - w wall shear stress - angle of plate inclination measured from the horizontal - stream function - dimensionless dynamic pressure  相似文献   

4.
On the basis of a spectral representation of the rapid part ij,2 of the correlation tensor p(u i /x j ) using Cramer's theorem the inequality ij,2(U j /x i )0 is obtained. As distinct from the realizability conditions, it can serve as a direct and very rigorous test of the adequacy of model expressions for ij,2. In particular, it is shown that the best known of such expressions do not satisfy this test.Translated from Izvestiya Rossiiskoi Akademii Nauk, Mekhanika Zhidkosti i Gaza, No.2, pp. 42–46, March–April, 1992.  相似文献   

5.
The statistical mechanics of classical and quantum mechanical systems interacting with many-body forces are investigated in the canonical and grand canonical ensembles. Under various general conditions on the attractive and repulsive parts of the potential energy and on the shapes of the domains k confining the system, it is shown that the canonical free energy per particle and the grand canonical pressure have unique limits for infinite systems which are convex monotonie functions of the specific volume and chemical potential respectively, and satisfy the expected thermodynamic relations.For pure pair forces with potential (r) sufficient conditions are: (r)D 1/r3+ as r0, |(r)|D 2/r3+ as r (>0), and (r)-w0 all r; the domains k may be constructed from a finite set of bounded domains of arbitrary shape by any sequence of isotropic expansions such that the volume V(k) approaches infinity with k.The work reported here was done while the author was on leave of absence from The Wheatstone Physics Laboratory, King's College, London W. C. 2, England.  相似文献   

6.
This paper proposed a proper inclination parameter and transformation variables for the analysis of free convection from an inclined plate with uniform surface heat flux to fluids of any Prandtl number. Very accurate numerical results and a simple correlation equation are obtained for arbitrary inclination from the horizontal to the vertical and for 0.001 Pr. Maximum deviation between the correlated and calculated data is less than 1.2%.
Freie Konvektion an einer beliebig geneigten Platte mit erheblicher Wärmestromdichte an der Oberfläche
Zusammenfassung Für die Berechnung von freier Konvektion von Fluiden mit beliebiger Prandtl-Zahl an einer geneigten Platte mit einheitlicher Wärmestromdichte an der Oberfläche werden ein zweckmäßiger Neigungsparameter und Transformationsvariablen eingeführt. Sehr genaue numerische Ergebnisse und eine einfache Korrelationsgleichung wurden für beliebige Neigungen zwischen der Horizontalen und der Vertikalen und für 0.001Pr erhalten. Die größte Abweichung zwischen Korrelations- und berechneten Daten liegt bei weniger als 1.2%.

Nomenclature f reduced stream function - g gravitational acceleration - h local heat transfer coefficient - k thermal conductivity - Nu local Nusselt number - p static pressure difference - Pr Prandtl number - q w wall heat flux - Ra* modified local Rayleigh number,g(q w x/k)x 3/ - T fluid temperature - T temperature of ambient fluid - u velocity component inx-direction - v velocity component iny-direction - x coordinate parallel to the plate - y coordinate normal to the plate Greek symbols thermal diffusivity - thermal expansion coefficient - (Ra* |sin|)1/5/( Ra* cos)1/6 - ( Ra* cos)1/6+( Ra*|sin|)1/5 - (y/x) - dimensionless temperature, (TT )/(q w x/k) - kinematic viscosity - [1+( Ra* cos)1/6/( Ra*|sin|)1/5]–1 - density of fluid - Pr/(1+Pr) - w wall shear stress - angle of inclination measured from the horizontal - stream function - dimensionless static pressure difference, p x 2/ 4  相似文献   

7.
This paper presents some test and analysis results for a spot welded joint subjected to tensile and alternate load. The effect of sheet rigidity on the tensile strength and fatigue life of the spot welded joint is studied by using the stress intensity factorsK I,K II,K III and an effective stress intensity factor Kmax calculated by the finite element method for crack around the nugget. The results show that the effective stress intensity factor Kmax is an essential parameter for estimating the fatigue life of the spot welded joint.  相似文献   

8.
Summary As part of a study on the hydrodynamics of a cyclone separator, a theoretical investigation of the flow pattern in a flat box cyclone (vortex chamber) has been carried out. Expressions have been derived for the tangential velocity profile as influenced by internal friction (eddy viscosity) and wall friction. The most important parameter controlling the tangential velocity profile is = –u 0 R/(v+ ), where u 0 is the radial velocity at the outer radius R of the cyclone, the kinematic liquid viscosity and is the kinematic eddy viscosity. For values of greater than about 10 the tangential velocity profile is nearly hyperbolic, for smaller than 1 the tangential velocity even decreases towards the centre. It is shown how and also the wall friction coefficient may be obtained from experimental velocity profiles with the aid of suitable graphs. Because of the close relation between eddy viscosity and eddy diffusion, measurements of velocity profiles in flat box cyclones will also provide information on the eddy motion of particles in a cyclone, a motion reducing its separation efficiency.List of symbols A cross-sectional area of cyclone inlet - h height of cyclone - p static pressure in cyclone - p static pressure difference in cyclone between two points on different radius - r radius in cyclone - r 1 radius of cyclone outlet - R radius of cyclone circumference - u radial velocity in cyclone - u 0 radial velocity at circumference of flat box cyclone - v tangential velocity - v 0 tangential velocity at circumference of flat box cyclone - w axial velocity - z axial co-ordinate in cyclone - friction coefficient in flat box cyclone (for definition see § 5) - 1 value of friction coefficient for 1<< 2 - 2 value of friction coefficient for 2<<1 - = - 1 value of for 1<< 2 - 2 value of for 2<<1 - thickness of laminar boundary layer - =/h - turbulent kinematic viscosity - ratio of z to h - k ratio of height of cyclone to radius R of cyclone - parameter describing velocity profile in cyclone =–u 0 R/(+) - kinematic viscosity of fluid - density of fluid - ratio of r to R - 1 value of at outlet of cyclone - 2 value of at inner radius of cyclone inlet - w shear stress at cyclone wall - angular momentum in cyclone/angular momentum in cyclone inlet - 1 value of at = 1 - 2 value of at = 2  相似文献   

9.
In technical reactors like catalytic honeycombreactors with a reaction at the wall and with an unknown field of concentrationc A (r,z) the diffusive flux A,D.w is replaced by the transferflux A,. The transferflux A, i.e. the Sherwood-number only depends on processes, which effect the diffusive flux, i.e. the gradient of concentration c A /r¦ w . For vaporisation with a constant concentrationc A,w at the wall or for a heterogeneous reaction with a variable concentrationc A,w the fluidstream would be such a process. In any case Sherwood-numberSh depends only on Bodenstein-numberBo and is — even for a heterogeneous reaction — no function of Damköhler-number. Only in case of a homogeneous reaction in the fluid phase there is a influence on the gradient of concentration and it followsSh (Bo, Da I).According toSh neu (Bo, Da II) the gradient of concentration c A /r in A,D is replaced in A, by the mean concentration and not, as usual, by the difference of concentration . Both concentrations depends on the Damköhler-numberDa II. The difference of concentrations shows either no or only little dependence ofDa II (this illustrates the quality of representation of A,D,w by A, ). If is defined by , than neu depends onDa II Sh neu =Sh neu (Bo, Da II). According to this definition of neu no new facts will arise. The common theoretical or experimental values of orSh are applicable to every process with heterogeneous reactions. In analogous cases the following explanations are also valid for heat-transfer at the wall, if a heterogeneous reaction takes place.Zusammenfassung In technischen Reaktoren, wie z. B. einem katalytischen Wabenrohrreaktor, in denen sich das Konzentrationsfeldc A (r, z) nicht genau ermitteln läßt, ersetzt die Übergangsstromdichte A, vereinfachend die Diffusionsstromdichte A,D,w an die Wand. Die Übergangsstromdichte A, bzw. dieSh-Zahl ist nur von den Vorgängen abhängig, die die Diffusionsstromdichte an die Wand, A,D,w , d. h. den Konzentrationsgradienten c A /r¦ w beeinflussen. Bei Verdampfung mit konstanter Wandkonzentrationc A,w oder bei einer heterogenen Reaktion an der Wand mit veränderlichemc A,w ist ein solcher Vorgang z. B. die Strömung, d. h. in beiden Fällen istSh =Sh (Bo) und hängt auch bei einer heterogenen Reaktion nicht von der Damköhler-II-Zahl ab. Nur wenn in der strömenden Phase (zusätzlich) eine homogene Reaktion vorliegt [12], hat diese einen Einfluß auf den Gradienten und es giltSh =Sh (Bo, Da I).Die AbhängigkeitSh neu (Bo, Da II) entsteht definitorisch dadurch, daß der in A,D auftretende Gradient c A /r in A, z. B. durch eine mittlere Konzentration ( neu), statt wie üblich durch eine Konzentrationsdifferenz , erfaßt wird. Beide Konzentrationen sind von der DamköhlerzahlDa II abhängig, ihre Differenz aber nicht bzw. wenig (worin sich die Güte der Abbildbarkeit von A,D,w durch A, verdeutlicht). Läßt man also in der Definitionsgleichung für die Stoffübergangszahl die veränderliche Wandkonzentrationc A,w weg, dann entsteht eine entsprechende starke Abhängigkeit der Größe neu (bzw.Sh neu) von derDa-II-Zahl:Sh neu=Sh neu (Bo, Da II). Neue Sachverhalte werden mit solchen Definitionen von neu nicht begründet. Die üblichen theoretisch oder experimentell ermittelten - oderSh-Werte können beim Auftreten von Stoffwandlungsvorgängen an der Wand für reaktionstechnische Berechnungen verwendet werden. Die folgenden Ausführungen gelten bei gegebener Analogie auch für den Wärmeübergang mit physikalischen oder chemischen Wandvorgängen, wie Verdampfung oder chemischer Wandreaktion.  相似文献   

10.
If a fluid enters an axially rotating pipe, it receives a tangential component of velocity from the moving wall, and the flow pattern change according to the rotational speed. A flow relaminarization is set up by an increase in the rotational speed of the pipe. It will be shown that the tangential- and the axial velocity distribution adopt a quite universal shape in the case of fully developed flow for a fixed value of a new defined rotation parameter. By taking into account the universal character of the velocity profiles, a formula is derived for describing the velocity distribution in an axially rotating pipe. The resulting velocity profiles are compared with measurements of Reich [10] and generally good agreement is found.Nomenclature b constant, equation (34) - D pipe diameter - l mixing length - l 0 mixing length in a non-rotating pipe - N rotation rate,N=Re /Re D - p pressure - R pipe radius - Re D flow-rate Reynolds number, - Re rotational Reynolds number, Re =v w D/ - Re* Reynolds number based on the friction velocity, Re*=v*R/ - (Re*)0 Reynolds number based on the friction velocity in a non-rotating pipe - Ri Richardson number, equation (10) - r coordinate in radial direction - dimensionless coordinate in radial direction, - v r ,v ,v z time mean velocity components - v r ,v ,v z velocity fluctations - v w tangential velocity of the pipe wall - v* friction velocity, - axial mean velocity - v ZM maximum axial velocity - dimensionless radial distance from pipe wall, - y + dimensionless radial distance from pipe wall - y 1 + constant - Z rotation parameter,Z =v w/v * =N Re D /2Re* - m eddy viscosity - ( m )0 eddy viscosity in a non-rotating pipe - coefficient of friction loss - von Karman constant - 1 constant, equation (31) - density - dynamic viscosity - kinematic viscosity  相似文献   

11.
It is proposed to investigate the stability of a plane axisymmetric flow with an angular velocity profile (r) such that the angular velocity is constant when r < rO – L and r > rO + L but varies monotonically from 1 to 2 near the point rO, the thickness of the transition zone being small L rO, whereas the change in velocity is not small ¦21¦ 2, 1. Obviously, as L O short-wave disturbances with respect to the azimuthal coordinate (k=m/rO 1/rO) will be unstable with a growth rate-close to the Kelvin—Helmholtz growth rate. In the case L=O (i.e., for a profile with a shear-discontinuity) we find the instability growth rate O and show that where the thickness of the discontinuity L is finite (but small) the growth rate does not differ from O up to terms proportional to kL 1 and 1/m 1. Using this example it is possible to investigate the effect of rotation on the flow stability. It is important to note that stabilization (or destabilization) of the flow in question by rotation occurs only for three-dimensional or axisymmetric perturbations.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 1, pp. 111–114, January–February, 1985.  相似文献   

12.
Hyperbolic phenomena in a strongly degenerate parabolic equation   总被引:2,自引:0,他引:2  
We consider the equation u t =((u) (u x )) x , where >0 and where is a strictly increasing function with lim s = <. We solve the associated Cauchy problem for an increasing initial function, and discuss to what extent the solution behaves qualitatively like solutions of the first-order conservation law u t = ((u)) x . Equations of this type arise, for example, in the theory of phase transitions where the corresponding free-energy functional has a linear growth rate with respect to the gradient.  相似文献   

13.
The diffuse approximation is presented and applied to natural convection problems in porous media. A comparison with the control volume-based finite-element method shows that, overall, the diffuse approximation appears to be fairly attractive.Nomenclature H height of the cavities - I functional - K permeability - p(M i ,M) line vector of monomials - p T p-transpose - M current point - Nu Nusselt number - Ri inner radius - Ro outer radius - Ra Rayleigh number - x, y cartesian coordinates - u, v velocity components - T temperature - M vector of estimated derivatives - t thermal diffusivity - coefficient of thermal expansion - practical aperture of the weighting function - scalar field - (M, M i ) weighting function - streamfunction - kinematic viscosity  相似文献   

14.
Zusammenfassung Zur Integration der Eulerschen Bewegungsgleichungen schwerer symmetrischer Kreisel werden der Winkel (t) (Abb. 1) durch (t)=0+(t) ersetzt und in sämtlichen Reihenentwicklungen von abhängiger Funktionen die Potenzen höheren als zweiten Grades vernachlässigt. Dadurch ist es möglich, die Eulerschen Winkel (t), (t) und (t) durch elementare Formeln zu beschreiben und somit sind die wesentlichsten Erscheinungen im Bewegungsablauf der schweren symmetrischen Kreisel einfach zu übersehen.  相似文献   

15.
A two-velocity and two-temperature model is considered for a continuous medium in relation to the flow of a mixture of gas and particles in the subsonic, transsonic, and supersonic parts of a Laval nozzle. It is assumed that the particles are small, and hence that the coefficients f and q, which define the interaction with the gas, are large (these coefficients are inversely proportional to the square of the particle radius for a Stokes mode of flow). This means that the velocity or thermal lag of the particles relative to the gas is small. The solution is sought as expansions with respect to the small parameters 1=1/f and 2=1/q.Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, No. 4, pp. 89–100, July–August, 1973.  相似文献   

16.
In dynamic rheological experiments melt behavior is usually expressed in terms of complex viscosity * () or complex modulusG * (). In contrast, we attempted to use the complex fluidity * () = 1/µ * () to represent this behavior. The main interest is to simplify the complex-plane diagram and to simplify the determination of fundamental parameters such as the Newtonian viscosity or the parameter of relaxation-time distribution when a Cole-Cole type distribution can be applied. * () complex shear viscosity - () real part of the complex viscosity - () imaginary part of the complex viscosity - G * () complex shear modulus - G() storage modulus in shear - G() loss modulus in shear - J * () complex shear compliance - J() storage compliance in shear - J() loss compliance in shear - shear strain - rate of strain - angular frequency (rad/s) - shear stress - loss angle - * () complex shear fluidity - () real part of the complex fluidity - () imaginary part of the complex fluidity - 0 zero-viscosity - 0 average relaxation time - h parameter of relaxation-time distribution  相似文献   

17.
The study of the diffusion of a magnetic field into a moving conductor is of interest in connection with the production of ultra-high-strength magnetic fields by rapid compression of conducting shells [1,2]. In [3,4] it is shown that when a magnetic field in a plane slit is compressed at constant velocity, the entire flux enters the conductor. In the present paper we formulate a general result concerning the conservation of the sum current in the cavity and conductor for arbitrary motion of the latter. We also consider a special case of conductor motion when the flux in the cavity remains constant despite the finite conductivity of the material bounding the magnetic field.Notation 1, * flux which has diffused into the conductor - 2 flux in the cavity - 0 sum flux - r radius - r* cavity boundary - thickness of the skin layer - (r) delta function of r - t time - q intensity of the fluid sink - v velocity - flux which has diffused to a depth larger than r - x self-similar variable - dimensionless fraction of the flux which has diffused to a depth larger than r - * fraction of the flux which has diffused into the conductor - a conductivity - c electrodynamic constant - Rm magnetic Reynolds number - dimensionless parameter  相似文献   

18.
Enos D'Ambrogio 《Meccanica》1989,24(4):200-210
Summary A set of implemented evolution equations, describing the coherent nonlinear interaction of plasma waves, based on the perturbation method, has been derived, taking into account initial value effects and third order nonlinearities in the modal amplitudes.The equations reduce, in the appropriate limit, to well known stochastic triplets of hydrodynamic type.It is argued that, the stochastization mechanism of the decay instability in strongly damped regime, may be interpreted as a Duffing-type behavior.
Sommario Si presenta un sistema di equazioni di evoluzione descrivente l'interazione coerente nonlineare di onde di plasma, tenendo conto di effetti di condizioni iniziali e nonlinearità del terzo ordine nelle ampiezze modali. Le equazioni si riducono, nel limite appropriato, a ben noti tripletti stocastici di tipo idrodinamico.Si ipotizza che il processo di stocastizzazione della instabilità di decadimento, in regime di forte dissipazione, possa essere interpretato da un modello dinamico del tipo Duffing.

Lyst of greek symbols omega (lower case)=frequency - delta (1.c.)=partial derivative - pi (1.c.)=greek pi (=3,14r. units) in (26) - Sigma (Capital case)=Summation symbol - Delta (C.c)=def. as in (14) - epsilon (1.c.) def. as in (10) - sigma (1.c.)=def. as in (36) - gamma (1.c.)=def. as in (37) - beta (1.c.)=def. as in (37) - ro, (1.c.)=def. as in (37) - alfa (1.c.)=def. in connection with k in (60) - Gamma (C.c.)=def. as in (63) and (66), (67) - delta (1.c.)=def. as in (66) - psi (1.c.)=def. as in (75) - fi (1.c.)=def. in (71) in connection with 0 - Fi (C.c.)=def. as in (75) - Omega (C.c.)=def. in (78)  相似文献   

19.
Two thermodynamical models of pseudoelastic behaviour of shape memory alloys have been formulated. The first corresponds to the ideal reversible case. The second takes into account the hysteresis loop characteristic of this shape memory alloys.Two totally independent techniques are used during a loading-unloading tensile test to determine the whole set of model parameters, namely resistivity and infrared thermography measurements. In the ideal case, there is no difficulty in identifying parameters.Infrared thermography measurements are well adapted for observing the phase transformation thermal effects.Notations 1 austenite 2 martensite - () Macroscopic infinitesimal strain tensor of phase - (2) f Traceless strain tensor associated with the formation of martensite phase - Macroscopic infiniesimal strain tensor - Macroscopic infinitesimal strain tensor deviator - f Trace - Equivalent strain - pe Macroscopic pseudoelastic strain tensor - x Distortion due to parent (austenite =1)product (martensite =2) phase transformation (traceless symmetric second order tensor) - M Total mass of a system - M() Total mass of phase - V Total volume of a system - V() Total volume of phase - z=M(2)/M Weight fraction of martensite - 1-z=M(1)/M Weight fraction of austenite - u 0 * () Specific internal energy of phase (=1,2) - s 0 * () Specific internal entropy of phase - Specific configurational energy - Specific configurational entropy - 0 f (T) Driving force for temperature-induced martensitic transformation at stress free state ( 0 f T) = T *Ts *) - Kirchhoff stress tensor - Kirchhoff stress tensor deviator - Equivalent stress - Cauchy stress tensor - Mass density - K Bulk moduli (K 0=K) - L Elastic moduli tensor (order 4) - E Young modulus - Energetic shear (0 = ) - Poisson coefficient - M s o (M F o ) Martensite start (finish) temperature at stress free state - A s o (A F o ) Austenite start (finish) temperature at stress free state - C v Specific heat at constant volume - k Conductivity - Pseudoelastic strain obtained in tensile test after complete phase transformation (AM) (unidimensional test) - 0 Thermal expansion tensor - r Resistivity - 1MPa 106 N/m 2 - () Specific free energy of phase - n Specific free energy at non equilibrium (R model) - n eq Specific free energy at equilibrium (R model) - n v Volumic part of eq - Specific free energy at non equilibrium (R L model) - conf Specific coherency energy (R L model) - c Specific free energy at constrained equilibria (R L model) - it (T) Coherency term (R L model)  相似文献   

20.
This study considers numerical simulations of the combustions of hydrogen and various hydrocarbons with air, including 21% oxygen and 79% nitrogen, in a burner and the numerical solution of the local entropy generation rate due to the high temperature and velocity gradients in the combustion chamber. The combustion is simulated for the fuel mass flow rates providing the same heat transfer rate to the combustion chamber in the each fuel case. The effects of (only in the case of H2 fuel) and equivalence ratio () on the combustion and entropy generation rate are investigated for the different (from 5,000 to 10,000 W) and s (from 0.5 to 1.0). The numerical calculation of combustion is performed individually for all cases with the help of the Fluent CFD code. Furthermore, a computer program has been developed to numerically calculate the volumetric entropy generation rate distributions and the other thermodynamic parameters by using the results of the calculations performed with the FLUENT code. The calculations bring out that the maximum reaction rates decrease with the increase of (or the decrease of ). The large positive and negative temperature gradients occur in the axial direction, nonetheless, the increase of significantly reduces them. The calculations bring out also that with the increase of from 0.5 to 1.0, the volumetric local entropy generation rates decrease about 4% and that the merit numbers increase about 16%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号