首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The microwave spectra of (methylamino)thiophosphoryl difluoride, CH(3)NHP(=S)F(2), and two deuterated species, CH(3)NDP(=S)F(2) and CD(3)NHP(=S)F(2), have been investigated in the region from 26.5 to 39.0 GHz. The rotational constants of the ground vibrational state have been determined and have been shown to be only consistent with the trans conformer (CH(3) group antiperiplanar to the P=S bond) with C(s) symmetry. The a-type R branch transitions have been assigned for the trans conformer for the three isotopomers on the basis of the rigid rotor model. Near-trans and near-cis forms without molecular planes of symmetry are predicted by all ab initio calculations with the near-trans form being more stable. However, the double-well potentials governing the interchange between the two enantiomeric near-trans as well as the two near-cis forms are too shallow to accommodate the zero-point energies of the nu(24) asymmetric torsion. Thus, the trans conformation with C(s) symmetry may be more accurate in explaining the microwave experimental data. The "adjusted" r(0) structural parameters have been obtained by systematically adjusting the ab initio MP2(full)/6-311+G(d,p) structure of the trans conformer with C(s) symmetry to fit the microwave rotational constants. The determined heavy atom distances are r(C-N) = 1.459(5), r(P-N) = 1.621(5), r(P=S) = 1.879(5), and r(P-F) = 1.550(5) A, and the heavy atom angles are angleCNP = 124.7(5) degrees , angleNPS = 118.3(5) degrees , angleNPF = 103.2(5) degrees , angleFPS = 117.0(5) degrees , and angleFPF = 94.6(5) degrees . The adjusted r(0) parameters have also been obtained for aminodifluorophosphine, H(2)NPF(2), with a slightly pyramidal -PNH(2) moiety. The results indicate that the previously reported short distance of 0.981(5) A for the N-H(o)(outer) bond from the microwave study is too short, and the adjusted r(0) value of 1.007(3) A is obtained from the combined data. Adjusted r(0) parameters are also reported for (dimethylamino)difluorophosphine, (CH(3))(2)NPF(2), with C(s) symmetry with the PNC(2) portion of the molecule being planar. The previously reported C-H distances from the electron diffraction study are too long, and the anglePNC(i) and angleC(o)NC(i) angles are also found to be in error. These results provide a reasonable explanation why the microwave and electron diffraction results differ for the structures of these latter two molecules.  相似文献   

2.
Variable temperature (-55 to -100 degrees C) studies of the infrared spectra (4000-400 cm(-1)) of cyclobutanol, c-C4H7OH dissolved in liquid xenon have been carried out. The infrared spectrum (4000-100 cm(-1)) of the gas has also been recorded. From these data two of the four possible stable conformers have been confidently identified and their order of stabilities has been experimentally determined where the first indicator is for the position of attachment of the hydroxyl group on the bent cyclobutyl ring (Eq=equatorial or Ax=axial) and the second one (t=trans, g=gauche) is the relative position of the hydroxyl rotor, i.e. rotation around the ring C-O bond. The enthalpy difference between the most stable Eq-t conformer and the second most stable rotamer, Eq-g, has been determined to be 200+/-50 cm(-1) (2.39+/-0.60 kJ/mol). This experimentally determined order is consistent with the order of stability predicted by ab initio calculations Eq-t>Eq-g>Ax-g>Ax-t. Evidence was obtained for the third conformer Ax-g which is predicted by ab initio calculations to be less stable by more than 650cm(-1) than the Eq-t form. The percentage of each conformer at ambient temperature is estimated to be Eq-t (50%), Eq-g (47%) and Ax-g (3%). The conformational stabilities, harmonic force fields, infrared intensities, Raman activities, depolarization ratios and vibrational frequencies have been obtained for all of the conformers from MP2(full)/6-31G(d) ab initio calculations. The optimized geometries and conformational stabilities have been obtained from ab initio calculations utilizing several different basis sets up to MP2(full)/aug-cc-pVTZ and from density functional theory calculations by the B3LYP method. By utilizing previously reported microwave rotational constants for the Eq-t conformer combined with ab initio MP2(full)/6-311+G(d,p) predicted structural values, adjusted r0 parameters have been obtained. The determined heavy atom structural parameters for the Eq-t conformer are: the distances C1-C4=1.547(5) angstroms, C4-C6=1.552(5)angstroms, C-O=1.416(5) angstroms and angles angleC6C4C1=86.6(5) degrees , angleC4C1C5=88.9(5) degrees and angleC6C5C1C4=22.8(5) degrees . The results are discussed and compared to the corresponding properties of some similar molecules.  相似文献   

3.
Ab initio computational, microwave spectroscopic, and electron diffraction techniques have been used to study the gas-phase structure of cyclopropylbenzene. Theoretical calculations at the HF, B3LYP, and MP2 levels for basis sets 6-31G(d) and 6-311G(d) have been carried out. Both MP2 and B3LYP calculations showed the bisected form to be lower in energy (245/157 and 660/985 cal mol(-1), respectively, for basis sets 6-311G(d)/6-31G(d)). Rotational constants for the bisected form of the parent and eight singly substituted (13)C isotopic species were obtained. The selection rules of the observed rotational transitions and the facts that eight (rather than six) singly substituted (13)C isotopers are observed and assigned and that seven of the compound's nine carbon atoms lie in the molecule's symmetry plane required the molecule to exist in the bisected conformation. No transition from the perpendicular form was observed in the pulsed-jet microwave experiment. Gas-phase electron diffraction data were collected at a nozzle-tip temperature of 265 K. Least squares analyses were carried out using ED data alone and with the inclusion of microwave rotational constants. The principal structural results (r(g) and angle(alpha)) obtained from the combined ED/MW least-squares analysis are r(C-H)(av) = 1.093(6) A, r(C(7)-C(8))(v) = 1.514(20) A, r(C(8)-C(9))(d) = 1.507(26) A, r(C(7)-C(1)) = 1.520(25) A, r(C-C)(Ph) = 1.395(1) A, angleC(1)C(7)C(8) = 119.6(17) degrees, angleC(2)C(1)C(7) = 122.5(25) degrees, angleC(1)C(2)C(3) = 120.9(35) degrees, angleHC(8)C(9) = 116.7(20) degrees, angleHCC(Ph) = 120.0 degrees (assumed).  相似文献   

4.
The infrared and Raman spectra of methyl, silyl, and germyl azide (XN3 where X=CH3, SiH3 and GeH3) have been predicted from ab initio calculations with full electron correlation by second order perturbation theory (MP2) and hybrid density function theory (DFT) by the B3LYP method with a variety of basis sets. These predicted data are compared to previously reported experimental data and complete vibrational assignments are provided for all three molecules. It is shown that several of the assignments recently proposed [J. Mol. Struct. (Theochem.) 434 (1998) 1] for methyl azide are not correct. Structural parameters for CH3N3 and GeH3N3 have been obtained by combining the previously reported microwave rotational constants with the ab initio MP2/6-311+G(d,p) predicted values. These "adjusted r0" parameters have very small uncertainties of +/-0.003 A for the XH distances and a maximum of +/-0.005 A for the heavy atom distances and +/-0.5 degrees for the angles. The predicted distance for the terminal NN bond which is nearly a triple bond is much better predicted by the B3LYP calculations, whereas the fundamental frequencies are better predicted by the scaled ab initio calculations. The results are discussed and compared to those obtained for some similar molecules.  相似文献   

5.
The infrared (3100-40 cm(-1)) spectra of gaseous and solid and Raman (3200-20 cm(-1)) spectra of liquid with qualitative depolarization values and solid n-propyltrifluorosilane, CH(3)CH(2)CH(2)SiF(3), have been recorded. Additionally the infrared spectra of the sample in nitrogen and argon matrices have been recorded. Both the anti and gauche conformers have been identified in the fluid phases but only the anti conformer remains in the solid. Variable temperature (-105 to -150 degrees C) studies of the infrared spectra of the sample dissolved in liquid krypton have been recorded and the enthalpy difference has been determined to be 135+/-14 cm(-1) (1.62+/-0.17 kJ mol(-1)) with the anti conformer the more stable form. At ambient temperature it is estimated that there is 51+/-2% of the gauche conformer present. Also the enthalpy difference in the liquid was obtained from variable temperature studies of the Raman spectra and from three conformer pairs an average value of 179+/-18 cm(-1) (2.14+/-0.22 kJ mol(-1)) was obtained again with the anti form the more stable conformer. Relatively complete vibrational assignments are proposed for both conformers based on the relative infrared and Raman spectral intensities, infrared band contours, depolarization ratios which are supported by normal coordinate calculations. The geometrical parameters, harmonic force constants, vibrational frequencies, infrared intensities, Raman activities, depolarization ratios, and energy differences have been obtained for the anti and gauche conformers from ab initio MP2/6-31G(d) calculations. Structural parameters and energy differences have also been obtained utilizing the larger 6-311+G(d, p) and 6-311+G(2d, 2p) basis sets. By utilizing the previously reported microwave rotational constants for five isotopomers of CH(3)SiF(3) along with ab initio predicted structural values, r(0) parameters have been obtained for methyltrifluorosilane. Similarly, from the ab initio predicted parameters "adjusted r(0)" parameters have been estimated for both conformers of n-propyltrifluorosilane. The results are discussed and compared with those obtained for some similar molecules.  相似文献   

6.
Variable temperature (-105 to -150 degrees C) studies of the infrared spectra (3500-400 cm(-1)) of ethylisothiocyanate, CH(3)CH(2)NCS, dissolved in liquid krypton have been recorded. Additionally the infrared spectra of the gas and solid have been re-investigated. These spectroscopic data indicate a single conformer in all physical states with a large number of molecules in the gas phase at ambient temperature in excited states of the CN torsional mode which has a very low barrier to conformational interchange. To aid in the analyses of the vibrational and rotational spectra, ab initio calculations have been carried out by the perturbation method to the second order (MP2) with valence and core electron correlation using a variety of basis sets up to 6-311+G(2df,2pd). With the smaller basis sets up to 6-311+G(d,p) and cc-PVDZ, the cis conformer is indicated as a transition state with all larger basis sets the cis conformer is the only stable form. The predicted energy difference from these calculations between the cis form and the higher energy trans conformer is about 125 cm(-1) which represents essentially the barrier to internal rotation of the NCS group (rotation around NC axis). Density functional theory calculation by the B3LYP method with the same basis sets predicts this barrier to be about 25 cm(-1). By utilizing the previously reported microwave rotational constants with the structural parameters predicted by the ab initio MP2(full)/6-311+G(d,p) calculations, adjusted r(0) structural parameters have been obtained for the cis form. The determined heavy atom parameters are: r(NC)=1.196(5), r(CS)=1.579(5), r(CN)=1.439(5), r(CC)=1.519(5)A for the distances and angles of angleCCN=112.1(5), angleCNC=146.2(5), angleNCS=174.0(5) degrees . The centrifugal distortion constants, dipole moments, conformational stability, vibrational frequencies, infrared intensities and Raman activities have been predicted from ab initio calculations and compared to experimental quantities when available. These results are compared to the corresponding quantities of some similar molecules.  相似文献   

7.
Variable temperature (-55--100 degrees C) studies of the infrared spectra (3500-400 cm(-1)) of ethylphosphine-borane, CH3CH2PH2BH3, and ethylphosphine-borane-d5 dissolved in liquid xenon have been recorded. From these data, the enthalpy difference has been determined to be 86 +/- 8 cm(-1) (1.03 +/- 0.10 kJ/mol), with the trans conformer the more stable rotamer. Complete vibrational assignments are presented for both conformers, which are consistent with the predicted frequencies obtained from the ab initio MP2/6-31G(d) calculations. The optimized geometries, conformational stabilities, harmonic force fields, infrared intensities, Raman activities, and depolarization ratios have been obtained from RHF/6-31G(d) and/or MP2/6-31G(d) ab initio calculations. These quantities are compared to the corresponding experimental quantities when appropriate as well as with some corresponding results for some similar molecules. The r0 structural parameters have been obtained from a combination of the previously reported microwave rotational constants and ab initio predicted parameters.  相似文献   

8.
IR and Raman spectra are reported for 1,1-difluorocyclopropane-d0, -d2, and -d4, and complete assignments of vibrational fundamentals are given for these species. These assignments are consistent with predictions of frequencies, intensities, and Raman depolarization ratios computed with the B3LYP/cc-pVTZ quantum chemical (QC) model. Ground state rotational constants for five 13C and deuterium isotopomers, obtained from published microwave spectra, were "corrected" into equilibrium rotational constants. The needed vibration-rotation interaction constants were computed with QC models after scaling the force constants. A semi-experimental equilibrium structure, fitted to the equilibrium moments of inertia, is rC1C = 1.470(1) A, rCC = 1.546(1) A, rCF = 1.343(1) A, rCH = 1.078(1) A, alphaFCF = 109.5(1), alphaFCC = 119.4(1) degrees, alphaHCH = 116.7(1) degrees, alphaC1CH = 117.4(1) degrees, and alphaCCH = 117.1(1) degrees. This structure agrees within the indicated uncertainties with the ab initio structure obtained from an extrapolated set of CCSD(T)/aug-cc-pVnZ calculations except for rCC = 1.548 A. The F2C-CH2 bonds are significantly shortened and strengthened; the H2C-CH2 bond is significantly lengthened and weakened.  相似文献   

9.
The microwave spectrum (6500-18 ,500 MHz) of 1-fluoro-1-silacyclopentane, c-C(4)H(8)SiHF has been recorded and 87 transitions for the (28)Si, (29)Si, (30)Si, and (13)C isotopomers have been assigned for a single conformer. Infrared spectra (3050-350 cm(-1)) of the gas and solid and Raman spectrum (3100-40 cm(-1)) of the liquid have also been recorded. The vibrational data indicate the presence of a single conformer with no symmetry which is consistent with the twist form. Ab initio calculations with a variety of basis sets up to MP2(full)/aug-cc-pVTZ predict the envelope-axial and envelope-equatorial conformers to be saddle points with nearly the same energies but much lower energy than the planar conformer. By utilizing the microwave rotational constants for seven isotopomers ((28)Si, (29)Si, (30)Si, and four (13)C) combined with the structural parameters predicted from the MP2(full)/6-311+G(d,p) calculations, adjusted r(0) structural parameters have been obtained for the twist conformer. The heavy atom distances in A? are: r(0)(SiC(2)) = 1.875(3); r(0)(SiC(3)) = 1.872(3); r(0)(C(2)C(4)) = 1.549(3); r(0)(C(3)C(5)) = 1.547(3); r(0)(C(4)C(5)) = 1.542(3); r(0)(SiF) = 1.598(3) and the angles in degrees are: [angle]CSiC = 96.7(5); [angle]SiC(2)C(4) = 103.6(5); [angle]SiC(3)C(5) = 102.9(5); [angle]C(2)C(4)C(5) = 108.4(5); [angle]C(3)C(5)C(4) = 108.1(5); [angle]F(6)Si(1)C(2) = 110.7(5); [angle]F(6)Si(1)C(3) = 111.6(5). The heavy atom ring parameters are compared to the corresponding r(s) parameters. Normal coordinate calculations with scaled force constants from MP2(full)/6-31G(d) calculations were carried out to predict the fundamental vibrational frequencies, infrared intensities, Raman activities, depolarization values, and infrared band contours. These experimental and theoretical results are compared to the corresponding quantities of some other five-membered rings.  相似文献   

10.
3,5-Difluoronitrobenzene (3,5-DFNB) and 2,6-difluoronitrobenzene (2,6-DFNB) have been studied by gas-phase electron diffraction (GED), MP2 ab initio, and by B3LYP density functional calculations. Refinements of r h1 and r e static and r h1 dynamic GED models were carried out for both molecules. Equilibrium r e structures were determined using anharmonic vibrational corrections to the internuclear distances ( r e - r a) calculated from B3LYP/cc-pVTZ cubic force fields. 3,5-DFNB possesses a planar structure of C 2 v symmetry with the following r e values for bond lengths and bond angles: r(C-C) av = 1.378(4) A, r(C-N) = 1.489(6) A, r(N-O) = 1.217(2) A, r(C-F) = 1.347(5) A, angleC6-C1-C2 = 122.6(6) degrees , angleC1-C2-C3 = 117.3(3) degrees , angleC2-C3-C4 = 123.0(3) degrees , angleC3-C4-C5 = 116.9(6) degrees , angleC-C-N = 118.7(3) degrees , angleC-N-O = 117.3(4) degrees , angleO-N-O = 125.5(7) degrees , angleC-C-F = 118.6(7) degrees . The uncertainties in parentheses are three times the standard deviations. As in the case of nitrobenzene, the barrier to internal rotation of the nitro group in 3,5-DFNB, V 90 = 10 +/- 4 kJ/mol, is substantially lower than that predicted by quantum chemical calculations. The presence of substituents in the ortho positions force the nitro group to rotate about the C-N bond, out of the plane of the benzene ring. For 2,6-DFNB, a nonplanar structure of C 2 symmetry with a torsional angle of phi(C-N) = 53.8(14) degrees and the following r e values for structural parameters was determined by the GED analysis: r(C-C) av = 1.383(5) A, r(C-N) = 1.469(7) A, r(N-O) = 1.212(2) A, r(C-F) = 1.344(4) A, angleC6-C1-C2 = 118.7(5) degrees , angleC1-C2-C3 = 121.2(2) degrees , angleC2-C3-C4 = 119.0(2) degrees , angleC3-C4-C5 = 121.1(4) degrees , angleC-C-N = 120.6(2) degrees , angleC-N-O = 115.7(4) degrees , angleO-N-O = 128.6(7) degrees , angleC-C-F = 118.7(5) degrees . The refinement of a dynamic model led to barriers V 0 = 16.5 +/- 1.5 kJ/mol and V 90 = 2.2 +/- 0.5 kJ/mol, which are in good agreement with values predicted by B3LYP/6-311++G(d,p) and MP2/ cc-pVTZ calculations. The values of C-F bond lengths are similar in both molecules. This is in contrast to the drastic shortening of the C-F bond in the ortho position in 2-fluoronitrobenzene compared to the C-F bond length in the meta and para position in 3- and 4-fluoronitrobenzene observed in an earlier GED study.  相似文献   

11.
The infrared and Raman spectrum of 1,4-dichlorobutane is reported in solid, liquid and gas. Ab initio calculations for the nine stable or metastable conformers of 1,4-dichlorobutane are reported for Moller-Ploessett second order electron correlation and B3LYP density functionals with a variety of basis sets, using approximations as high as 6-311+g(2d, 2p). Normal coordinate calculations were conducted for the nine conformers and the results used to provide assignments for some of the observed infrared and Raman bands. An attempt to use the assignments together with the ab initio intensities or Raman activities to investigate the composition of the liquid at room temperature proved modestly successful, and suggested that the populations are altered from those expected in the gas phase by interactions of the permanent electric dipole moments with the dipolar plasma in which the conformers are immersed in the liquid. A substantial disagreement between the Moeller-Ploessett and density functional results is reported, and the calculation of intensities and activities is insufficiently accurate to allow detailed interpretation of the spectrum of the room temperature liquid. A complete assignment of fundamentals is given for the conformer of Ci symmetry, and one Raman and one infrared band is identified with the C2h conformer. All the other infrared and Raman bands in the liquid or the gas are composites of several contributors.  相似文献   

12.
The structures and compositions of gaseous trans-1,2-dichloro- (DCCH) and trans-1,2-difluorocyclohexane (DFCH), each of which may exist with the halogen atoms in a diaxial (aa) or diequatorial (ee) conformation, have been investigated by electron diffraction. The analysis was aided by rotational constants from microwave spectroscopy for the ee form of DFCH and by ab initio and density functional theory molecular orbital calculations for all species. The skeletons of the molecules have similar parameter values, but for the Cl-C-C-Cl and F-C-C-F fragments there are significant differences between the corresponding C-C-X bond angles and the X-C-C-X torsion angles in the two systems. There are also significant differences between the values of these parameters in the aa and ee forms of the same system. The composition of DCCH at 100 degrees C was measured to be 60(4)% aa, and that of DFCH at 70 degrees C was 42(7)% aa; the uncertainties are estimated 2sigma. From the preferred B3LYP/aug-cc-pVTZ calculations, the predicted theoretical composition is 51.2% aa for DCCH and 40.8% aa for DFCH. (Calculations at the levels B3LYP/6-31G(d) and MP2/6-31G(d) give similar results for DCCH, but both predict more aa than ee for DFCH.) Values (r(g)/A and angle(alpha)/degree) for some of the more important parameters of the aa/ee forms of DCCH are = 1.525(4)/1.525(6), C-Cl = 1.806(2)/1.787(2), angleC2-C1-Cl = 107.3(3)/111.5(3), angleC1-C2-C3 = 113.9(5)/111.6(5), angleC2-C3-C4 = 111.3(12)/109.9(12), and Cl-C2-C3-Cl = 165.3(9)/-59.4(9); and for DFCH C-C = 1.525(6)/1.520(9), C-F = 1.398(2)/1.390(2), angleC2-C1-F = 106.5(6)/109.2(6), angleC1-C2-C3 = 111.4(9)/110.9(9), angleC2-C3-C4 = 113.1(10)/113.1(10), and F-C2-C3-F = 171.1(37)/-67.2(37). The structures and compositions are discussed.  相似文献   

13.
The infrared (3100-40 cm(-1)) and Raman (3100-20 cm(-1)) spectra of gaseous and solid n-propylsilane, CH(3)CH(2)CH(2)SiH(3) and the Si-d(3) isotopomer, CH(3)CH(2)CH(2)SiD(3), have been recorded. Additionally, the Raman spectra of the liquids have been recorded and qualitative depolarization values obtained. Both the anti and gauche conformers have been identified in the fluid phases but only the anti conformer remains in the solid. Variable temperature (-105 to -150 degrees C) studies of the infrared spectra of n-propylsilane dissolved in liquid krypton have been recorded and the enthalpy difference has been determined to be 220+/-22 cm(-1) (2.63+/-0.26 kJ mol(-1)) with the anti conformer the more stable form. A similar value of 234+/-23 cm(-1) (2.80+/-0.28 kJ mol(-1)) was obtained for deltaH for the Si-d(3) isotopomer. At ambient temperature it is estimated that there is 30+/-2% of the gauche conformer present. The potential function governing the conformation interchange has been estimated from the far infrared spectral data, the enthalpy difference, and the dihedral angle of the gauche conformer, which is compared to the one predicted from ab initio MP2/6-31G(d) calculations. The barriers to conformational interchange are: 942, 970 and 716 cm(-1) for the anti to gauche, gauche to gauche, and gauche to anti conformers, respectively. Relatively complete vibrational assignments are proposed for both the n-propylsilane-d(0) and Si-d(3) molecules based on the relative infrared and Raman spectral intensities, infrared band contours, depolarization ratios, and normal coordinate calculations. The geometrical parameters, harmonic force constants, vibrational frequencies, infrared intensities, Raman activities and depolarization ratios, and energy differences have been obtained for the anti and gauche conformers from ab initio MP2/6-31G(d) calculations. Structural parameters and energy differences have also been obtained utilizing the larger 6-311 + G(d,p) and 6-311 + G(2d,2p) basis sets. From the isolated Si-H stretching frequency from the Si-d(2) isotopomer the r(0) distances of 1.484 and 1.485 A have been determined for the SiH(s) and SiH(a) bonds, respectively, for the anti conformer, and 1.486 A for the SiH bond for the gauche conformer. Utilizing previously reported microwave rotational constants for the anti conformer and the determined SiH distances along with ab initio predicted parameters 'adjusted r(0)' parameters have been obtained for the anti conformer. The results are discussed and compared to those obtained for some similar molecules.  相似文献   

14.
As a model of the core of molecules forming liquid crystals, the molecular structure of phenyl benzoate (Ph-C(=O)-O-Ph) at 409 K was determined by gas electron diffraction, and the relationship between the gas-phase structures of model compounds and the nematic-to-liquid transition temperatures was studied. Structural constraints were obtained from RHF/6-31G ab initio calculations. Vibrational mean amplitudes and shrinkage corrections were calculated from the harmonic force constants given by normal coordinate analysis. Thermal vibrations were treated as small-amplitude motions, except for the phenyl torsion, which was treated as a large-amplitude motion. The potential function for torsion was assumed to be V(phi(1),phi(2)) = V(12)(1 - cos 2phi(1))/2 + V(14)(1 - cos 4phi(1))/2 + V(22)(1 - cos 2phi(2))/2, where phi(1) and phi(2) denote the torsional angles around the C-Ph and O-Ph bonds, respectively. The potential constants (V(ij)()/kcal mol(-)(1)) and the principal structure parameters (r(g)/A, angle(alpha)/deg) with the estimated limits of error (3sigma) are as follows: V(12) = -1.3 (assumed); V(14) = -0.5(9); V(22) = 3.5(15); r(C=O) = 1.208(4); r(C(=O)-O) = 1.362(6); r(C(=O)-O) - r(O-C) = -0.044 (assumed); r(C(=O)-C) = 1.478(10); = 1.396(1); angleOCO = 124.2(13); angleO=CC = 127.3(12); angleCOC = 121.4(22); ( angleOCC(cis) - angleOCC(trans))/2 = 3.0(15); ( angleC(=O)CC(cis) - angleC(=O)CC(trans))/2 = 4.8(17), where < > means an average value and C-C(cis) and C-C(trans) bonds are cis and trans to the C(=O)-O bond, respectively. The torsional angle around the O-Ph bond was determined to be 64(+26,-12) degrees. An apparent correlation was found between the contributions of the cores to the clearing point of liquid crystals and the gas-phase structures of model compounds of the cores of mesogens, i.e., phenyl benzoate, trans-azobenzene (t-AB), N-benzylideneaniline, N-benzylideneaniline N-oxide (NBANO), trans-azoxybenzene (t-AXB), and trans-stilbene. The structures of t-AB, NBANO, and t-AXB have been obtained by our research group.  相似文献   

15.
The infrared spectra (3500–40 cm−1) of gaseous and solid and the Raman spectra (3500–30 cm−1) of liquid and solid 1-chlorosilacyclobutane, c-C3H6SiClH, have been obtained. Both the axial and equatorial conformers with respect to the chlorine atom have been identified in the fluid phases. Variable temperature (−105 to −150°C) studies of the infrared spectra of the sample dissolved in liquid krypton have been carried out. From these data, the enthalpy difference has been determined to be 211±17 cm−1 (2.53±0.21 kJ/mol), with the equatorial conformer being the more stable form and the only conformer remaining in the annealed solid. At ambient temperatures, approximately 26% of the axial conformers are present in the vapor phase. A complete vibrational assignment is proposed for the equatorial conformer, and many of the fundamentals of the axial conformers have also been identified. The vibrational assignments are supported by normal coordinate calculations utilizing ab initio force constants. Complete equilibrium geometries, conformational stabilities, harmonic force fields, infrared intensities, Raman activities, and depolarization ratios have been determined for both rotamers by ab initio calculations employing the 6-31G(d) basis set at the levels of restricted Hartree–Fock (RHF) and/or Moller–Plesset (MP) to second order. Structural parameters have also been obtained using MP2/6-311+G(d,p) ab initio calculations. The r0 parameters for both conformers are obtained from a combination of the ab initio predicted values and the twelve previously reported microwave rotational constants. The results are discussed and compared to those obtained for some similar molecules.  相似文献   

16.
The structures of gaseous CH(3)AsF(2) and (CH(3))(2)AsF have been determined by electron diffraction incorporating vibrational amplitudes derived from ab initio force fields scaled by experimental frequencies and, for the difluoride, restrained by microwave constants. The following parameters (r(alpha) degrees structure, distances in pm, angles in degrees) have been determined for CH(3)AsF(2): r(As-C) = 194.6(4), r(As-F) = 173.1(1), angleCAsF = 95.2(1), angleFAsF = 97.0(1). For (CH(3))(2)AsF structural refinement gives r(As-C) = 195.1(1), r(As-F) = 175.4(1), angleCAsF = 95.3(5), and angleCAsC = 96.9(8). For the series (CH(3))(3)As, (CH(3))(2)AsF, CH(3)AsF(2), and AsF(3), both As-C and As-F bond lengths are shortened with increasing numbers of F atoms, but the angles CAsF and FAsF are almost invariant.  相似文献   

17.
The molecular structure and conformational properties of 1,2-dibromoethyl-trichlorosilane (CH2BrCHBrSiCl3) have been investigated using gas-phase electron diffraction (GED) data recorded at a temperature of 100 degrees C, together with ab initio molecular orbital (MO) and density functional theory (DFT) calculations, infrared (IR) and Raman spectroscopy in the liquid and solid phases, and normal coordinate analysis (NCA). The molecule exists in the gas- and liquid phases as a mixture of three conformers, gauche(-) [G(-)], with a refined torsion angle phi(BrCCBr)=-71(6) degrees, anti [A], with a torsion angle phi(BrCCBr) approximately -170 degrees , and gauche(+) [G(+)], with a torsion angle phi(BrCCBr) approximately +70 degrees . The second torsion angle of importance, the rotation about the CSi bond, has been refined to a value of +175(13) degrees . Torsion angles were only refined for the more abundant G(-) conformer. In the solid phase, only the G(-) conformer was observed. The temperature-dependent Raman spectra have provided an estimate of the relative conformational entropies, DeltaS. The obtained composition from GED refinements was (%) G(-)/A/G(+)=64(27)/23(13)/13(18) (values with estimated 2sigma uncertainties), giving a conformational stability order in agreement with both the Raman enthalpy measurements and the ab initio MO and DFT calculations using the 6-311G(d) basis set and scaled zero-point energies. Relevant structural parameter values obtained from the GED refinements (with the ab initio HF values used as constraints) were as follows (G(-) values with estimated 2sigma uncertainties): bond lengths (r(g)):r(C-C)=1.501(18)A, r(SiC)=1.865(15)A, r(CBr)=1.965(8)A (average), r(SiCl)=2.028(3)A (average). Bond angles ( anglealpha):angleCCSi=114.1(33) degrees , angleC1C2Br=114.0(21) degrees , angleCSiCl=109.6(7) degrees (average). Experimental IR/Raman and obtained vibrational wavenumbers based on both the unscaled, fixed-scaled as well as the scale-refined quantum-mechanical force fields [HF/6-311G(d)] are presented. The results are discussed and compared with some similar molecules from the literature.  相似文献   

18.
The previously predicted ability of the methyl group of nitromethane to form hydrogen bonding with halides is now confirmed experimentally based on X-ray data of novel nitromethane solvates followed by theoretical ab initio calculations at the MP2 level of theory. The cationic (1,3,5-triazapentadiene)Pt(II) complexes [Pt{HN=C(NC(5)H(10))N(Ph)C(NH(2))=NPh}(2)](Cl)(2), [1](Hal)(2) (Hal = Cl, Br, I), and [Pt{HN=C(NC(4)H(8)O)N(Ph)C(NH(2))=NPh}(2)](Cl)(2), [2](Cl)(2), were crystallized from MeNO(2)-containing systems providing nitromethane solvates studied by X-ray diffraction. In the crystal structure of [1][(Hal)(2)(MeNO(2))(2)] (Hal = Cl, Br, I) and [2][(Cl)(2)(MeNO(2))(2)], the solvated MeNO(2) molecules occupy vacant spaces between lasagna-type layers and connect to the Hal(-) ion through a weak hydrogen bridge via the H atom of the methyl thus forming, by means of the Hal(-)···HCH(2)NO(2) contact, the halide-nitromethane cluster "filling". The quantum-chemical calculations demonstrated that the short distance between the Hal(-) anion and the hydrogen atom of nitromethane in clusters [1][(Hal)(2)(MeNO(2))(2)] and [2][(Cl)(2)(MeNO(2))(2)] is not just a consequence of the packing effect but a result of the moderately strong hydrogen bonding.  相似文献   

19.
Variable temperature (-55 to -100°C) studies of the infrared spectra (3500-400 cm(-1)) of fluorocyclobutane, c-C(4)H(7)F, dissolved in liquid xenon have been carried out as well as the infrared spectra of the gas. By utilizing eight pairs of conformers at 10 different temperatures, the enthalpy difference between the more stable equatorial conformer and the axial form has been determined to be 496±40 cm(-1) (5.93±0.48 kJ/mol). The percentage of the axial conformer present at ambient temperature is estimated to be 8±1%. The ab initio MP2(full) average predicted energy difference from a variety of basis sets is 732±47 cm(-1) (9.04±0.44 kJ/mol) and the average value of 602±20 cm(-1) from density functional theory predictions by the B3LYP method are significantly larger than the experimentally determined enthalpy value. By utilizing previously reported microwave rotational constants for the equatorial and axial conformers combined with ab initio MP2(full)/6-311+G(d,p) predicted structural values, adjusted r(0) parameters have been obtained. The determined heavy atom structural parameters for the equatorial [axial] conformer are: distances (?) C-F=1.383(3) [1.407(3)], C(α)-C(β)=1.543(3) [1.546(3)], C(β)-C(γ)=1.554(3) [1.554(3)] and angles (°) ∠C(α)C(β)C(γ)=85.0(5) [89.2(5)], ∠C(β)C(α)C(β)=89.3(5) [89.2(5)], ∠F-(C(β)C(α)C(β))=117.4(5) [109.2(5)] and a puckering angle of 37.4(5) [20.7(5)]. The conformational stabilities, harmonic force fields, infrared intensities, Raman activities, depolarization ratios and vibrational frequencies have been obtained for both conformers from MP2(full)/6-31G(d) ab initio calculations and compared to experimental values where available. The results are discussed and compared to the corresponding properties of some other monosubstituted cyclobutanes with halogen and pseudo-halogen substituents.  相似文献   

20.
The equilibrium geometries of NCCN and CNCN were calculated from experimental ground-state rotational constants and ab initio values for the vibration—rotation coupling constants. For NCCN, R1e(NC) = 1.1578(5) Å and R2e(CC) = 1.3839(5) Å were obtained, where estimated error bars are given in parentheses. The calculated equilibrium bond lengths of CNCN are R1e(CN) = 1.1813(5) Å, R2e(NC) = 1.3116(5) Å and R3e(CN) = 1.1581(5) Å. Ground-state rotational and centrifugal distortion constants are predicted with high accuracy for various isotopomers of NCCN.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号