首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Particle beam hollow cathode optical emission spectroscopy (PB/HC-OES) is evaluated as a generic tool for total protein determinations by monitoring the carbon atomic emission (C (I) 193.0 nm) resultant from dissociated analyte species. Previous studies demonstrated the capability of the PB/HC-OES system for total protein determinations with limits of detection for bovine serum albumin (BSA) samples being at the single-nanogram level for 200 l injections. Non-linear behavior across the concentration range in the calibration curve was observed due to the poor transport of small particles (owing to low analyte concentrations) through the PB interface. The potential use of non-volatile salts as carrier agents is investigated in the determination of protein samples by PB/HC-OES. A range of chloride salts (different cations), potassium salts (different anions), and an organic modifier (ammonium acetate) is investigated here for possible use as carriers upon addition as sample injection matrices for protein samples. The analyte response curves of BSA samples with KCl added as the sample injection matrix show higher sensitivity, better linearity (R2) and subsequently lower detection limits in comparison to those obtained with water, HCl, KNO3 or ammonium acetate as carrier matrices.  相似文献   

2.
The use of inductively coupled plasma atomic emission spectrometry with ultrasonic nebulization (USN-ICP-AES) for determining Ag, Al, As, Ba, Bi, Cd, Co, Cr, Cu, Fe, Hg, Mg, Mn, Ni, Pb, Sb, Sr, V and Zn in complex matrices of Ca, Na, K and P in waste waters is described. Generally, depressions in the analyte emission intensity occur in the presence of concomitants. Matrix interferences can be minimized by increasing the operating power and lowering the carrier gas flow rate. However, the enhancement of the signal-to-background ratios (SBRs) shows an opposite trend. Therefore, routine analyses were performed at a compromise power setting of 1,350 W, a carrier gas flow rate of 0.8 L min(-1) and an observation height of 14 mm above the load coil and using a matrix matched calibration procedure. Limits of detection (LODs) at chosen operating conditions were at microg L(-1) levels for most of the elements studied, including mercury when KBr is added to the analyte solution to enhance sensitivity. LODs were not significantly changed in the presence of matrix elements. Recoveries for the majority of added elements from spiked waste water samples are between 93 and 105% using a matrix matched calibration.  相似文献   

3.
Solid-phase microextraction (SPME) was developed to address the need for rapid sampling and sample preparation, both in the laboratory and on-site. Unlike traditional sample preparation methods, SPME is a non-exhaustive extraction technique in which only a small portion of the target analyte is removed from the sample matrix. Therefore, calibration of SPME for quantitative analysis is very important. In this review, we summarized the proposed SPME calibration methods and the characteristics of these methods were discussed.  相似文献   

4.
A simple and rapid method based on solid-phase microextraction (SPME) technique followed by gas chromatography with microelectron-capture detection (GC-microECD) was developed for the simultaneous determination of more than 30 pesticides (pyrethroids and organochlorinated among others) in milk. To our knowledge, this is the first application of SPME for the determination of pyrethroid pesticides in milk. Negative matrix effects due to the complexity and lipophility of the studied matrix were reduced by diluting the sample with distilled water. A 2(5-1) fractional factorial design was performed to assess the influence of several factors (type of fiber coating, sampling mode, stirring, extraction temperature, and addition of sodium chloride) on the SPME procedure and to determine the optimal extraction conditions. After optimization of all the significant variables and interactions, the recommended procedure was established as follows: DSPME (using a polydimethylsiloxane (PDMS)/divinylbenzene (DVB) coating) of 1 mL of milk sample diluted with Milli-Q water (1:10 dilution ratio), at 100 degrees C, under stirring for 30 min. The proposed method showed good linearity and high sensitivity, with limits of detection (LOD) at the sub-ng mL(-1) level. Within a day and among days precisions were also evaluated (R.S.D.<15%). One of the most important attainments of this work was the use of external calibration with milk-matched standards to quantify the levels of the target analytes. The method was tested with liquid and powdered milk samples with different fat contents covering the whole commercial range. The efficiency of the extraction process was studied at several analyte concentration levels obtaining high recoveries (>80% in most cases) for different types of full-fat milks. The optimized procedure was validated with powdered milk certified reference material, which was quantified using external calibration and standard addition protocols. Finally, the DSPME-GC-microECD methodology was applied to the analysis of milk samples collected in farms of dairy cattle from NW Spain.  相似文献   

5.
The aim of this study was to evaluate the applicability of different calibration approaches in a multi- and single-residue analysis of modern pesticides in plant matrices using liquid chromatography-electrospray mass spectrometry (HPLC-ESI-MS). In the first set of experiments the determination of eight pesticides representing different groups of polar/unstable pesticides (carbamates, benzimidazoles, azoles, benzoylphenylurea) in apple samples was performed. The trueness and precision of data obtained by using: (i) external solvent standard calibration, (ii) external matrix-matched standard calibration and (iii) echo-peak internal standard calibration was compared. The last mentioned method is a novel technique providing the possibility to inject internal standard of the same identity as a target analyte, so that its retention time is close to the analyte from the sample. According to expectation, when using external standard solvent calibration the results were under- or overestimated due to suppression or enhancement of analyte's signal by matrix components. On the other hand with the use of matrix-matched calibration accurate data were obtained. With echo-peak technique accurate results comparable to those obtained by matrix calibration were obtained for six out of eight pesticides. In the second set of experiment we used the echo-peak technique to overcome the problem with the response instability in the analysis of chlormequat in pear concentrate samples. As an internal standard method the echo-peak technique provided the possibility of monitoring of signal decrease during the analytical sequence and to compensate this decrease by relating sample peak area relatively to this internal standard.  相似文献   

6.
Headspace SPME was used to analyse malodorous sulfur compounds in liquid industrial effluents. A pulsed flame photometric detector (PFPD) was selected for a specific and sensitive analysis. Two fibres, PDMS/Dvb and PDMS/Carboxen, which are particularly convenient for extracting small and volatile molecules were tested. To compare these fibres, both sensitivity and artefact formation were considered. The PDMS/Carboxen fibre showed the lower limits of detection and moreover the least artefact formation yields. It was therefore selected and headspace SPME extraction conditions were optimised. Limits of detection of the target compounds evaluated were 12–31 ng L–1 and repeatability was around 7%. Due to the adsorption mechanism involved, extraction is strongly influenced by the sample matrix and the low affinity compounds can suffer displacement effects. To investigate the occurrence of this phenomenon, two sampling times corresponding to non-equilibrium (5 min) and equilibrium conditions (60 min) were investigated. An external calibration was carried out by using standard solutions for both sampling times. The developed procedure was then compared to the standard addition method on a real industrial effluent. The results obtained from the two methods and for the two extraction times were in good agreement, demonstrating that even a long sampling time can be used. Therefore, the simple and timesaving external calibration was defined as relevant for an accurate quantification of sulfur compounds by headspace SPME.  相似文献   

7.
A solid-phase microextraction (SPME) method has been developed for the determination of 7 pyrethroid insecticides (bifenthrin, lambda-cyhalothrin, permethrin, cyfluthrin, cypermethrin, fenvalerate, and tau-fluvalinate) in water, vegetable (tomato), and fruit (strawberry) samples, based on direct immersion mode and subsequent desorption into the injection port of a GC/MS. The SPME procedure showed linear behavior in the range tested (0.5-50 microg L(-1) in water and 0.01-0.1 mg kg(-1) in tomato) with r(2) values ranging between 0.97 and 0.99. For water samples limits of detection ranged between 0.1 and 2 microg L(-1 )with relative standard deviations lower than 20%. Detection limits for tomato samples were between 0.003 and 0.025 mg kg(-1) with relative standard deviations around 25%. Finally, the SPME procedure has been applied to vegetable (tomato) and fruit (strawberry) samples obtained from an experimental plot treated with lambda-cyhalothrin, and in both cases the analyte was detected and quantified using a calibration curve prepared using blank matrix. SPME has been shown to be a simple extraction technique which has a number of advantages such as solvent-free extraction, simplicity, and compatibility with chromatographic analytical systems. Difficulties with the correct quantification in a complex matrix are also discussed.  相似文献   

8.
An in situ derivatization solid-phase microextraction method has been developed for the determination of parabens, triclosan and related chlorophenols in water. Acetylated derivatives are selectively determined using gas chromatography with tandem mass spectrometry. Parameters affecting both derivatization and SPME procedures, such as fiber coating, extraction mode, temperature, volume of derivatizating reagent and ionic strength, are studied and optimized through a multifactorial experimental design. The performance of the method is studied in terms of accuracy, linearity, precision and limits of detection. Quantitative recoveries (≥82%) and satisfactory precision (RSD ≤ 12%) are obtained. Limits of detection at the low picogram per millilitre level are achieved for all target compounds. Linearity is studied in a wide range of concentrations and an analysis of variance with a lack-of-fit test is run to validate the calibration data. Extraction time profiles are also obtained. Finally, the applicability of the proposed method is demonstrated for several real samples including river water, wastewaters and swimming pool water. Since no matrix effects are observed, quantification can readily be carried out by external calibration with ultrapure water standards.  相似文献   

9.
The possibility of quantitative analysis of aromatic hydrocarbons in oil-based asphalt release agents was investigated using headspace solid-phase microextraction (HS-SPME) followed by gas chromatography-mass spectrometry (GC-MS). The target analytes studied were benzene, toluene, ethylbenzene, p-, m-, and o-xylene (BTEX) and 1,3,5-trimethylbenzene and 1,2,4-trimethylbenzene. Experimental parameters influencing HS-SPME efficiency were studied (equilibration time between sample and headspace and between headspace and SPME fiber, sample amount and sample matrice effects). A HS-SPME method using hexadecane as a surrogate matrice was developed. The detection limit was estimated as 0.03-0.08 ppm (w/w) for the target analytes investigated. Good linearity was observed (R2 > 0.999) for all calibration curves at high, medium and low concentration level. The repeatability of the method (RSD, relative standard deviation) was found to be less than 10% (generally less than 5%) in triplicate samples and approximately 2% at eight consecutive tests on one and the same sample. The accuracy of the method given by recovery of spiked samples was between 85 and 106% (generally between 95 and 105%). The HS-SPME method developed was applied to four commercially available asphalt release agents. External calibration and standard addition approaches were investigated regarding accuracy. The results showed that standard addition generates higher accuracy than external calibration. The contents of target aromatic hydrocarbons in the asphalt release agents studied varied greatly from approximately 0.1-700 ppm. The method described looks promising, and could be a valuable tool for determination of aromatic hydrocarbons in different types of organic matrices.  相似文献   

10.
The use of inductively coupled plasma atomic emission spectrometry with ultrasonic nebulization (USN-ICP-AES) for determining Ag, Al, As, Ba, Bi, Cd, Co, Cr, Cu, Fe, Hg, Mg, Mn, Ni, Pb, Sb, Sr, V and Zn in complex matrices of Ca, Na, K and P in waste waters is described. Generally, depressions in the analyte emission intensity occur in the presence of concomitants. Matrix interferences can be minimized by increasing the operating power and lowering the carrier gas flow rate. However, the enhancement of the signal-to-background ratios (SBRs) shows an opposite trend. Therefore, routine analyses were performed at a compromise power setting of 1350 W, a carrier gas flow rate of 0.8 L min–1 and an observation height of 14 mm above the load coil and using a matrix matched calibration procedure. Limits of detection (LODs) at chosen operating conditions were at μg L–1 levels for most of the elements studied, including mercury when KBr is added to the analyte solution to enhance sensitivity. LODs were not significantly changed in the presence of matrix elements. Recoveries for the majority of added elements from spiked waste water samples are between 93 and 105% using a matrix matched calibration. Received: 13 January 2000 / Revised: 10 April 2000 / Accepted: 18 April 2000  相似文献   

11.
Gas chromatography with electron capture detection (GC-ECD) is a highly explosive-sensitive analytical technique. However, its application to the analysis of sediment extracts is hampered by the presence of numerous endogenous interferences. In the present study, solid-phase microextraction (SPME) was used both as a purification technique for sediment extracts and as an extraction technique for water samples prior to analysis by GC-ECD. SPME/GC-ECD coupling was optimized and applied to the trace analysis of nine explosives including nitroaromatics and RDX in real seawater and marine sediment samples. Addition of a high concentration of salt (30%, w/v) in the aqueous medium and use of a carbowax/divinylbenzene (CW/DVB) coating led to optimal extraction efficiencies. Method detection limits (MDLs) ranged from 0.05 to 0.81 microg/L in water and from 1 to 9 microg/kg in dry sediment. Except for RDX, spike recoveries in seawater were satisfactory (89-147%) when samples were fortified at 2 microg/L of each analyte. Spike recoveries from dry sediment fortified at 10 microg/kg of each analyte gave lower recoveries but these could also be due to degradation in the matrix. With a smaller volume of aqueous sample required compared to solid-phase extraction (SPE), SPME is an attractive method for the analysis of limited volumes of sediment pore-water. Moreover, the use of SPME eliminated interferences present in sediment extracts thus allowing the detection of the target analytes that were otherwise difficult to detect by direct injection.  相似文献   

12.
Solid-phase microextraction (SPME) is a fast, solvent-free alternative to conventional sample preparation techniques. This technique involves exposing a fused silica fiber that has been coated with a stationary phase to an aqueous solution or its headspace to selectively extract compounds from their matrix. The fiber is then removed, and the analytes are thermally desorbed in the injector of a gas chromatograph. By sampling from the headspace above sample matrices, SPME can be used to extract target analytes from very complex matrices. In this study, SPME in the headspace is used in developing a method for the dye 1-methylaminoanthraquinone (MAAQ) and two lachrymators: orthochlorobenzalmalononitrile (CS) (tear gas) and 2-chloroacetophenone (CN) (tear gas). The focus is to develop a robust method to minimize sample preparation and to reduce matrix interferences encountered by other extraction techniques. In developing the method, several fibers are studied for their affinity for the compounds of interest. Although this method is developed for qualitative analysis, the extraction time and temperature profile are thoroughly investigated to provide the optimal conditions. The use of a salt solution is evaluated to increase the partitioning of MAAQ into the headspace. Using this method, qualitative extraction is achieved for the analysis of CN, CS, and MAAQ from its matrices. CN and CS are extracted in less than 5 min, though MAAQ needed more than 15 min to achieve a reasonable response. If more sensitivity is required, the use of a salt solution increases the response of MAAQ by 90-fold.  相似文献   

13.
A new approach has been developed for the extraction and determination of aldehydes such as veratraldehyde, m-nitrobenzaldehyde, cinnamaldehyde, benzaldehyde, and p-chlorobenzaldehyde by using solid-phase microextraction (SPME) and high-performance liquid chromatography with UV detection (HPLC/UV). The method involves adsorption of the aldehydes on polydimethylsiloxane/divinylbenzene-coated fiber, followed by desorption in the desorption chamber of the SPME-HPLC interface, using acetonitrile-water (70 + 30) as the mobile phase; UV detection was at 254 nm. A good separation of 5 aldehydes was obtained on a C18 column. The detection limits of veratraldehyde, m-nitrobenzaldehyde, cinnamaldehyde, benzaldehyde, and p-chlorobenzaldehyde are 25, 41, 13, 12, and 11 pg/mL, respectively, which are about 100 times better than the detection limits for other SPME methods using gas chromatography. The proposed method was validated by determining benzaldehyde in bitter almonds and cinnamaldehyde in cinnamon bark. The recoveries of the 5 analytes were determined by analysis of spiked drinking water.  相似文献   

14.
A method based on solid-phase microextraction (SPME) and gas chromatography with micro-electron capture detection (GC-microECD) has been optimized for the analysis of pyrethroids in water samples. The influence of parameters such as temperature, fibre coating, salting-out effect and sampling mode on the extraction efficiency has been studied by means of a mix-level factorial design, which allowed the study of main effects as well as two factor interactions. Finally, a method based on direct SPME at 50 degrees C, using polydimethylsiloxane fibre is proposed. The method showed good linearity (R2>0.995) and repeatability (RSD相似文献   

15.
In quantitative analysis of environmental samples using high-performance liquid chromatography–electrospray ionization mass spectrometry (HPLC-ESI-MS) one of the major problems is the suppression or, less frequently, the enhancement of the analyte signals in the presence of matrix components. Standard addition is the most suitable method for compensating matrix effects, but it is time-consuming and laborious. In this study we compare the potential of three calibration approaches to compensate matrix effects that occurred when seven analytes (naphthalene sulfonates) were quantified in time series samples of waters with different matrices (untreated and treated industrial wastewater). The data obtained by external calibration, internal calibration with one standard, and external sample calibration (corresponding to matrix-matched calibration) were compared with those obtained by standard addition. None of the three approaches were suitable for a sample series of highly loaded, untreated wastewater with highly variable matrix. For less heavily loaded and less variable samples (treated wastewater effluents), the external sample calibration provided reasonable results for most analytes with deviations mostly below 25% as compared to standard addition. External sample calibration can be suitable to compensate matrix effects from moderately loaded samples with more uniform matrices, but it is recommended to verify this for each sample series against the standard addition approach.  相似文献   

16.
Optimal conditions of headspace solid-phase microextraction followed by gas chromatography coupled to pulsed flame photometric detection (SPME–GC–PFPD) have been investigated to validate the analysis of 11 organotin compounds in plant matrices including methyl-, butyl-, and phenyltin compounds. The extraction of organotin compounds from vegetal matrices has been carried out using optimized conditions of HCl-based extraction. The use of headspace SPME to preconcentrate the analytes allowed most of the detection limits to be obtained sub-0.5?ng(Sn)?g?1. The precision evaluated using RSD with six replicates ranges between 5 and 10% (except for triphenyltin: 17%). The accuracy of the method was validated on spiked or polluted vegetal samples taken from Bizerte Lagoon (Tunisia) and by comparison with classical liquid–liquid extraction (LLE). These results highlight the suitability of the selected method for organotin control in complex environmental matrices such as aquatic plants.  相似文献   

17.
This paper proposes a multiple headspace solid-phase microextraction (MHS-SPME) method coupled to gas chromatography-tandem mass spectrometry detection (GC/MS/MS) for the simultaneous determination of 2,4,6-trichloroanisole, 2,3,4,6-tetrachloroanisole, pentachloroanisole, 2,4,6-tribromoanisole, 4-ethylphenol, 4-ethylguaiacol, 4-vinylphenol and 4-vinylguaiacol in wines. These compounds are involved in the presence of "cork taint" and Brett character in wines. The MHS-SPME method is a modification of SPME developed for quantitative analysis that avoids possible matrix effects based on an exhaustive analyte extraction from the sample. After demonstrating the existence of matrix effect in the analysis of the target compounds by HS-SPME with a divinylbenzene/Carboxen/polydimethylsiloxane (DVB/CAR/PDMS) fibre, the MHS-SPME method was developed and validated. The proposed method showed satisfactory linearity, precision and detection limits, all below the odour detection thresholds of the compounds in wine matrices. Good recoveries were observed for all compounds, always above 90%, and the repeatability obtained was considered acceptable, ranging between 2 and 11%. After checking the applicability of the method by comparing the results recorded with those obtained with the standard addition method, the method was applied successfully to the analysis of wine samples. To our knowledge, this is the first time that MHS-SPME combined with GC/MS/MS has been applied to simultaneously determine haloanisoles and volatile phenols in wine.  相似文献   

18.
A sensor for remote analysis of polycyclic aromatic hydrocarbons (PAHs) has been developed. It is based on direct solid phase extraction of the pollutants on a polymeric film, followed by monitoring the laser induced fluorescence, emitted from the film, via optical fibers. The proposed sensor has been applied to direct PAH analysis in clear and turbid aqueous environments. Linear calibration plots have been obtained for PAH solutions containing both humic substances and clay suspensions. Detection limits in the range of 10 ppt have been achieved. Results are obtained almost instantaneously (in drinking water) or within minutes, in more complicated matrices. This set-up has provided considerable improvement of the detection limits, when compared to the traditional fiber-optic fluorescence probe. In case of pyrene, a 100-fold and a 250-fold improvement in the detection limits have been obtained for the clay and humic substances-containing water, respectively. The spectral response of the polymeric film has been studied under various conditions and the feasibility of the method for analysis of PAH mixtures has been addressed.  相似文献   

19.
The detection of water-soluble vitamins B(1), B(2), B(6), B(12) and C by matrix-assisted laser desorption/ionization (MALDI) time-of-flight mass spectrometry (TOFMS) was attempted by studying 17 porphyrin matrices. Comparative studies of porphyrin matrices, useful mass spectral window, matrix/analyte molar ratio (M/A), ultraviolet-visible absorption characteristics and quantitative results were made. Most porphyrin matrices provide a useful mass spectral window in the low-mass range. The optimal M/A increases with increasing molecular mass of the vitamin. Vitamin B(12) possesses the highest molecular mass and requires a higher M/A. The presence of hydroxyl or carboxyl groups in the porphyrin is an indicator of a useful MALDI matrix. Vitamins B(2) and B(6) were readily ionized upon irradiation with a 337 nm laser without the use of any porphyrin matrix. Improved linearity and sensitivity of the calibration curves were obtained with samples prepared with a constant M/A. The limits of detection and quantitation are at the picomole level. The results indicate that MALDI-TOFMS with porphyrin matrices is a rapid and viable technique for the detection of low molecular mass water-soluble vitamins.  相似文献   

20.
Extractions of liquid samples were carried out using wall coated needles prepared from stainless steel capillary columns instead of syringe needles. This micro extraction technique was applied to the analysis of pesticides in water. Important parameters influencing the extraction such as sample velocity, extraction time and also the desorption parameters were investigated and optimized. Automation of this technique was realized using a conventional automatic sampler. Limits of detection were improved using the multiple extraction/desorption technique. Chromatographic data and limits of detection were compared with those obtained by solid phase micro extraction (SPME). Using a needle with a 7 microns film yielded limits of detection varying from 0.001-0.1 microgram/L and were in the same range as those resulting from the extraction using a 100 microns polydimethylsiloxane (PDMS) SPME fiber. The main advantages of the needle extraction technique were the significantly higher extraction speed and the practical aspects of a stable steel needle compared to those of a fragile fiber. The extraction speed using a needle with a 7 microns film was up to five times higher than the speed of SPME using a 100 microns PDMS fiber. The steel needle could be stressed mechanically in a higher extent than a SPME fiber. Sample volumes and aliquots of liquid media could be handled and moved from one bottle to another using the automatic sampler.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号