首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 171 毫秒
1.
国际上依据咪唑甘油磷酸酯脱水酶(IGPD)底物结构筛选, 成功获得了一系列含氮杂环磷酸酯类化合物作为IGPD抑制剂, 然而IGPD与含氮杂环磷酸酯类抑制剂间的作用模式尚不清楚. 本研究利用Gaussian 03程序, 基于密度泛函理论B3LYP方法, 选择6-31G**基组优化含氮杂环磷酸酯类化合物, 在确定其稳定构象的基础上利用分子对接、力学优化构建IGPD与其含氮杂环磷酸酯类抑制剂相互作用的复合物结构, 基于化合物的电子结构(前线轨道能级及组成、原子电荷、自然键轨道等)、复合物的空间结构(抑制剂识别IGPD的功能域、分子间氢键、van der Waals相互作用等)探讨了IGPD与含氮杂环磷酸酯类抑制剂作用方式, 确定了含氮杂环电荷分布、磷酸根离子电荷分布、前线轨道LUMO能级是影响抑制剂活性的内在因素, 为进一步筛选、优化高效的新型除草剂提供了重要信息.  相似文献   

2.
采用连续介质模型(PCM)以及明确/连续的混合溶剂模型,运用密度泛函理论(DFT)和含时密度泛函理论(TD-DFT)方法,研究了溶剂极性对D-π-A类两性离子化合物1-(4-aza-4-methylphenyl)-2-trans-(4-oxyphenyl)ethane(AMTOE)分子几何、电子结构以及光谱性质的影响.计算结果表明,随着溶剂极性和超分子簇大小的增加,AMTOE基态(S0)分子几何从醌式结构向芳式结构转化.从基态(S0)到激发态(S1),化合物AMTOE醌式结构增强.从弱极性的氯仿溶液到强极性的水溶液,AMTOE分子的吸收光谱和发射光谱均发生蓝移,并且吸收光谱的蓝移程度大于发射光谱的蓝移程度,与实验现象定性一致.吸收光谱和发射光谱发生蓝移的原因是随着溶剂极性增强,HOMO轨道能级与LUMO轨道能级之间的能隙增大.对于具有明显电荷转移的AMTOE分子的溶剂化显色效应,长程矫正的含时密度泛函TD-CAM-B3LYP方法比传统的含时密度泛函TD-B3LYP方法更为合理.另外,明确/连续的混合溶剂模型能更好的描述该类体系在强极性溶剂中的溶剂化显色效应.  相似文献   

3.
用密度泛函理论和DMol3程序包对锐钛矿型TiO2(101)表面复合三(8-羟基喹啉-5-羧酸)铁的敏化机理进行了研究. 计算结果表明, 该染料敏化剂经式结构的HOMO(最高占据分子轨道)-LUMO(最低未占据分子轨道)能隙非常小, 很容易受到激发; TiO2纳米晶吸附染料后, HOMO、LUMO 和费米能级都升高, 导致吸附染料后开路电压VOC升高. 并进一步探讨了三(8-羟基喹啉-5-羧酸)铁在TiO2(101)表面复合过程及作用机理.  相似文献   

4.
用密度泛函理论和DMol3程序包对锐钛矿型TiO2(101)表面复合三(8-羟基喹啉-5-羧酸)铁的敏化机理进行了研究.计算结果表明,该染料敏化剂经式结构的HOMO(最高占据分子轨道)-LUMO(最低未占据分子轨道)能隙非常小,很容易受到激发;TiO2纳米晶吸附染料后,HOMO、LUMO和费米能级都升高,导致吸附染料后开路电压VOC升高.并进一步探讨了(8-羟基喹啉-5-羧酸)铁在TiO2(101)表面复合过程及作用机理.  相似文献   

5.
以能斯特方程为基础, 通过分析电流密度与氧化还原物种活度变化, 即载流子浓度变化的关系, 计算出有机半导体材料电极电势的变化, 从而建立起有机半导体前线轨道, 即最高占据分子轨道(HOMO)能级和最低未被占据分子轨道(LUMO)能级相对于热力学平衡态的能量位移随电流密度变化的数学关系. 进而依据能级能量位移引起的能隙变化, 提出了有机电致发光显示器(OLED)中“热激子”的产生机制.  相似文献   

6.
采用密度泛函理论(DFT)B3LYP/6-31G*方法优化了一系列含有噻唑生色团的Y-型有机杂环分子的几何构型, 在此基础上结合有限场(FF)方法和含时密度泛函理论(TD-DFT)对分子的非线性光学(NLO)活性和电子光谱进行计算分析. 结果表明, 这些分子具有A-π-D-π-A(A: 受体, D: 给体)结构, 分子基态偶极矩、极化率和二阶NLO系数(β)随支链共轭桥的增长及生色团共轭效应的增大而增大. 同时, 该系列有机杂环分子的二阶极化率总的有效值(βtot)与其前线分子轨道能级相关, 分子的前线分子轨道能级差越小, βtot值越大.  相似文献   

7.
采用密度泛函理论方法系统地研究了由不同结构转变方式引发的一系列光致变色分子在用于分子开关时的电子输运性质.对各种分子结构转变前后的最高占据轨道(HOMO)与最低空轨道(LUMO)的能级间隙(HLG)、前线轨道的空间分布、电子透射谱和投影电子态密度(PDOS)谱进行了计算和讨论.结果表明,相似的结构转变方式通常造成分子具有相似的电流开关性质,这与分子的共轭程度又有一定的关系.比较各种分子的电流开关比后发现偶氮苯结构单元具有最大的电流开关比.  相似文献   

8.
二氢吲哚类染料用于染料敏化太阳能电池光敏剂的比较   总被引:1,自引:0,他引:1  
采用密度泛函理论(DFT)和含时密度泛函理论(TD-DFT)对四种二氢吲哚染料进行研究, 从中筛选出相对优秀的染料敏化太阳能电池光敏剂. 对前线分子轨道的计算表明, 二氢吲哚染料的前线分子轨道结构非常有利于染料激发态向TiO2电极的电子注入. 对真空中的紫外和可见光吸收光谱的计算表明, 二氢吲哚染料的吸收光谱与太阳辐射光谱匹配较好. 对染料分子的能级计算表明, 二氢吲哚染料的能级结构比较适合于I-/I-3作电解液的TiO2纳米晶太阳能电池的光敏剂. 二氢吲哚染料最低未占据分子轨道(LUMO) 能级均比TiO2晶体导带边能级高, 能够保证激发态染料分子高效地向TiO2电极转移电子. 二氢吲哚染料最高占据分子轨道(HOMO)的能级比I-/I-3能级低, 保证了失去电子的染料分子能够顺利地从电解液中得到电子. 与实验数据比较, 得出在提高染料敏化太阳能电池转换效率方面, 对染料的关键要求是LUMO能级的位置. 染料分子的稳定性是染料敏化太阳能电池使用寿命的关键因素. 通过对化学键键长的比较表明, 二氢吲哚染料的分子稳定性基本相同. 对计算结果的分析表明, 二氢吲哚染料1(ID1)的LUMO能级最高, 分子稳定性最好, 在酒精溶液中的吸收光谱与太阳辐射光谱匹配很好, 在同类染料中是较好的染料敏化太阳能电池光敏剂.  相似文献   

9.
利用聚-(菲醌-alt-芴)(L-PPQF)中邻位羰基高效的反应活性, 将L-PPQF与乙二醇进行缩合反应, 制备了一类新型的含有菲基-螺-氧杂环的聚合物: 聚-(芴-alt-螺氧菲)(L-PPOF), 同时将L-PPQF的齐聚物二芴基-菲醌(L-DFPQ)与乙二醇反应生成二芴基-螺-氧-菲(L-DFPO). 对比L-DFPQ与L-DFPO的核磁、 质谱和元素分析, 确定了螺-氧杂环结构的生成. L-PPQF和L-PPOF的核磁和红外光谱等分析结果也证实了L-PPOF同样具有螺-氧杂环结构. L-PPOF的光物理和电化学分析结果表明, 相对于L-PPQF和商业化产品聚芴(PF), 新生成的L-PPOF具有较高的溶液和固态效率以及合适的电子注入能级. 初步的电致发光器件测试结果证明, L-PPOF在电致发光功能性材料开发领域具有一定的价值.  相似文献   

10.
本文设计了系列基于二酮基吡咯并吡咯(DPP)的有机小分子太阳能电池(OSCs)给体材料.设计的分子结构中,2个DPP分子片段作为2个端基通过不同的芳香杂环π-桥相连接.利用密度泛函理论和含时密度泛函理论方法研究了所设计化合物的电子和光学性质.研究结果表明,在分子中引入不同的π-桥可以有效调节设计分子的前线分子轨道能量、能隙和吸收光谱,但是对几何结构影响很小.所设计化合物1-8均在近红外光谱区具有强吸收和窄能隙,这有利于提高有机太阳能电池的短路电流和光吸收效率.前线分子轨道分析发现,化合物1-8具有较低的最高占据轨道能级,可提高有机太阳能电池的开路电压.化合物1-3,5和7的前线分子轨道能级与典型富勒烯受体材料相匹配,可选用PCBM,bisPCBM和PC71BM作为受体材料;而化合物4,6和8则应考虑选用其他的太阳能电池受体材料.结果表明,所设计的分子可作为性能优良的OSCs给体材料,为开发和利用太阳能电池给体材料提供理论依据.  相似文献   

11.
Low-bandgap organic semiconductors have attracted much attention for their multiple applications in optoelectronics. However, the realization of narrow bandgap is challenging particularly for small molecules. Herein, we have synthesized four quinoidal compounds, i. e., QSN3 , QSN4 , QSN5 and QSN6 , with electron rich S,N-heteroacene as the quinoidal core and indandione as the end-groups. The optical bandgap of the quinoidal compounds is systematically decreased with the extension of quinoidal skeleton, while maintaining stable closed-shell ground state. QSN6 absorbs an intense absorption in the first and second near-infrared region in the solid state, and has extremely low optical bandgap of 0.74 eV. Cyclic voltammetry analyses reveal that the lowest unoccupied molecular orbital (LUMO) energy levels of the four quinoidal compounds all lie below −4.1 eV, resulting in good electron-transporting characteristics in organic thin-film transistors. These results demonstrated that the combination of π-extended quinoidal core and end-groups in quinoidal compounds is an effective strategy for the synthesis of low-bandgap small molecules with good stability.  相似文献   

12.
A concept for the interactions between π‐systems is necessary to understand a number of phenomena in modern material sciences such as supramolecular properties and self‐assembly. In the present article, we investigate the intermolecular interaction energies between organic semiconductors with extended π‐systems using SAPT (symmetry‐adapted perturbation theory), LMO‐EDA (localized molecular orbital energy decomposition analysis), DFT‐D (density functional theory including dispersion corrections), and force‐field approaches. Both apolar organic molecules such as acenes and highly polarized π‐systems of merocyanines and squaraines were used to probe the influence of electrostatics on the shape of the potential energy surfaces (PES) governing the geometric structures of aggregates. Our results reveal that the shapes of the PESs result from variations in the short‐range, highly specific repulsion forces even for highly polar molecules. Using distributed quadrupoles, we show that it is nevertheless possible to mimic the intermolecular potentials with electrostatics. This is also possible with van‐der‐Waals potentials and a simple overlap‐based force‐field ansatz based on the overlap between p‐orbitals. © 2016 Wiley Periodicals, Inc.  相似文献   

13.
Organic semiconductors with very small optical energy gaps have attracted a lot of attention for near-infrared-active optoelectronic applications. Herein, we present a series of donor-acceptor-donor (D−A−D) organic semiconductors consisting of a highly electron-deficient naphtho[1,2-b:5,6-b′]dithiophene-2,7-dione quinoidal acceptor and oligothiophene donors that show very small optical energy gaps of down to 0.72 eV in the solid state. Investigation of the physicochemical properties of the D−A−D molecules as well as theoretical calculations of their electronic structures revealed an efficient intramolecular interaction between the quinoidal acceptor and the aromatic oligothiophene donors in the D−A−D molecules; this significantly enhances the backbone resonance and thus reduces the bond length alternation along the π-conjugated backbones. Despite the very small optical energy gaps, the D−A−D molecules have low-lying frontier orbital energy levels that give rise to air-stable ambipolar carrier transport properties with hole and electron mobilities of up to 0.026 and 0.043 cm2 V−1 s−1, respectively, in field-effect transistors.  相似文献   

14.
Air stable n-type conductive molecules with high electrical conductivities and excellent device performance have important applications in organic electronics, but their synthesis remains challenging. Herein, we report three self-doped n-type conductive molecules, designated QnNs, with a closed-shell quinoidal backbone and alkyl amino chains of different lengths. The QnNs are self-doped by intermolecular electron transfer from the amino groups to the quinoidal backbone. This process is ascertained unambiguously by experiments and theoretical calculations. The use of a quinoidal structure effectively improves the self-doping level, and thus increases the electrical conductivity of self-doped n-type conductive molecules achieved by a closed-shell structure from<10−4 S cm−1 to>0.03 S cm−1. Furthermore, the closed-shell quinoidal structure results in good air stability of the QnNs, with half-lives>73 days; and Q4N shows an electrical conductivity of 0.019 S cm−1 even after exposure to air for 120 days. When applying Q6N as the cathode interlayer in organic solar cells (OSCs), an outstanding power conversion efficiency of up to 18.2 % was obtained, which represents one the best results in binary OSCs.  相似文献   

15.
This Minireview summarizes the recent progress of stimuli-responsive purely organic phosphorescence materials. Organic phosphorescence is closely related to the intermolecular interactions, because such interactions are beneficial to promote spin orbital coupling (SOC) and boost intersystem cross (ISC) efficiency and finally are conducive to satisfactory phosphorescence. It is found that the intermolecular interactions, which are essential for organic phosphorescence, are easily disturbed by external stimuli such as mechanical force, photon, acid, chemical vapor, leading to the luminescence change. According to this principle, various purely organic phosphorescence materials sensitive to external stimuli have been developed. This Minireview categorizes reported stimuli-responsive purely organic phosphorescence materials on the basis of different stimuli, including mechanochromism, mechanoluminescence, photoactivity, acid-responsiveness and other stimuli. Some prospective strategies for constructing stimuli-responsive purely organic phosphorescence molecules are provided.  相似文献   

16.
New heterocyclic diradicaloids based on boron and nitrogen-doped polycyclic systems with open-shell ground-states are obtained via concomitant structural and quinoidal extensions, thus allowing to merge the best of both design strategies. A combination of experimental characterization and theoretical calculations have helped disclose their electronic structure, as well as rationalize their associated magnetic and photophysical properties, spanning the chemical space of available molecular templates for cutting-edge applications in organic electronics and spintronics.  相似文献   

17.
Conjugated molecules and polymers with intrinsic quinoidal structure are promising n-type organic semiconductors, which have been reported for application in field-effect transistors and thermoelectric devices. In principle, the molecular and electronic characteristics of quinoidal polymers can also enable their application in organic solar cells. Herein, two quinoidal polymers, named PzDP-T and PzDP-ffT, based on dipyrrolopyrazinedione were synthesized and used as electron acceptors in all-polymer solar cells (all-PSCs). Both PzDP-T and PzDP-ffT showed suitable energy levels and wide light absorption range that extended to the near-infrared region. When combined with the polymer donor PBDB-T, the resulting all-PSCs based on PzDP-T and PzDP-ffT exhibited a power conversion efficiency (PCE) of 1.33 and 2.37 %, respectively. This is the first report on the application of intrinsic quinoidal conjugated polymers in all-PSCs. The photovoltaic performance of the all-PSCs was revealed to be mainly limited by the relatively poor and imbalanced charge transport, considerable charge recombination. Detailed investigations on the structure-performance relationship suggested that synergistic optimization of light absorption, energy levels, and charge transport properties is needed to achieve more successful application of intrinsic quinoidal conjugated polymers in all-PSCs.  相似文献   

18.
A complete experimental and theoretical study has been carried out for aromatic and quinoidal perylene‐based bridges substituted with bis(diarylamine) and bis(arylimine) groups respectively. The through‐bridge inter‐redox site electronic couplings (VAB) have been calculated for their respective mixed‐valence radical cation and radical anion species. The unusual similitudes of the resulting VAB values for the given structures reveal the intervention of molecular shapes with balanced semi‐quinoidal/semi‐aromatic structures in the charge delocalization. An identical molecular object equally responding to the injection of either positive or negative charges is rare in the field of organic π‐conjugated molecules. However, once probed herein for perylene‐based systems, it can be extrapolated to other π‐conjugated bridges. As a result, this work opens the door to the rational design of true ambipolar bulk and molecular conductors.  相似文献   

19.
Electron‐donating molecules play an important role in the development of organic solar cells. (Z )‐2‐(2‐Phenylhydrazinylidene)acenaphthen‐1(2H )‐one (PDAK), C18H12N2O, was synthesized by a Schiff base reaction. The crystal structure shows that the molecules are planar and are linked together forming `face‐to‐face' assemblies held together by intermolecular C—H…O, π–π and C—H…π interactions. PDAK exhibits a broadband UV–Vis absorption (200–648 nm) and a low HOMO–LUMO energy gap (1.91 eV; HOMO is the highest occupied molecular orbital and LUMO is the lowest unoccupied molecular orbital), while fluorescence quenching experiments provide evidence for electron transfer from the excited state of PDAK to C60. This suggests that the title molecule may be a suitable donor for use in organic solar cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号