首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Recent studies have revealed that supported gold catalysts exhibit comparable or superior catalytic performance relative to platinum group metals, especially at low temperatures, in the preferential oxidation of CO under excess H2 (CO-PROX). Complete conversion of CO with good selectivity of O2 for CO2 and highly stable catalyst performance in the presence of CO2 and H2O are considered to be essential for the successful development of CO-PROX catalysts for application in polymer electrolyte membrane fuel cells. The performance of supported gold catalysts in the CO-PROX reaction has been shown to be dependent on the characteristics of gold (size, oxidation state, and its interaction with other metal/oxides), nature of the support (size, composition, preparation method, presence of promoters, and doping with other metal ions), and reaction conditions (temperature and feed composition). Complete CO conversion has been achieved in the presence of certain gold catalysts below 100 °C. The unresolved issues in CO-PROX include the undesired oxidation of H2, detrimental effects of CO2 and/or H2O, and long-term stability of the catalysts. To address these issues, the catalytic activity of gold supported on simple oxides such as TiO2, CeO2, Al2O3, and Fe2O3 has been improved dramatically by the addition of promoters, alteration of the gold-oxide support interface, and modification of the oxide supports. Recently, nanoporous gold has also been recognized to be promising for this reaction. This review highlights recent developments of unsupported and supported gold catalysts for the CO-PROX reaction.  相似文献   

2.
The electrochemical CO2 reduction reaction (CO2RR) to yield synthesis gas (syngas, CO and H2) has been considered as a promising method to realize the net reduction in CO2 emission. However, it is challenging to balance the CO2RR activity and the CO/H2 ratio. To address this issue, nitrogen-doped carbon supported single-atom catalysts are designed as electrocatalysts to produce syngas from CO2RR. While Co and Ni single-atom catalysts are selective in producing H2 and CO, respectively, electrocatalysts containing both Co and Ni show a high syngas evolution (total current >74 mA cm−2) with CO/H2 ratios (0.23–2.26) that are suitable for typical downstream thermochemical reactions. Density functional theory calculations provide insights into the key intermediates on Co and Ni single-atom configurations for the H2 and CO evolution. The results present a useful case on how non-precious transition metal species can maintain high CO2RR activity with tunable CO/H2 ratios.  相似文献   

3.
The electrochemical CO2 reduction reaction (CO2RR) to yield synthesis gas (syngas, CO and H2) has been considered as a promising method to realize the net reduction in CO2 emission. However, it is challenging to balance the CO2RR activity and the CO/H2 ratio. To address this issue, nitrogen‐doped carbon supported single‐atom catalysts are designed as electrocatalysts to produce syngas from CO2RR. While Co and Ni single‐atom catalysts are selective in producing H2 and CO, respectively, electrocatalysts containing both Co and Ni show a high syngas evolution (total current >74 mA cm?2) with CO/H2 ratios (0.23–2.26) that are suitable for typical downstream thermochemical reactions. Density functional theory calculations provide insights into the key intermediates on Co and Ni single‐atom configurations for the H2 and CO evolution. The results present a useful case on how non‐precious transition metal species can maintain high CO2RR activity with tunable CO/H2 ratios.  相似文献   

4.
The visible-light-driven photoreduction of CO2 to value-added chemicals over metal-free photocatalysts without sacrificial reagents is very interesting, but challenging. Herein, we present amide-bridged conjugated organic polymers (amide-COPs) prepared via self-condensation of amino nitriles in combination with hydrolysis, for the photoreduction of CO2 with H2O without any photosensitizers or sacrificial reagents under visible light irradiation. These catalysts can afford CO as the sole carbonaceous product without H2 generation. Especially, amide-DAMN derived from diaminomaleonitrile exhibited the highest activity for the photoreduction of CO2 to CO with a generation rate of 20.6 μmol g−1 h−1. Experiments and DFT calculations confirmed cyano/amide groups as active sites for CO2 reduction and second amine groups for H2O oxidation, and suggested that superior selectivity towards CO may be attributed to the adjacent redox sites. This work presents a new insight into designing photocatalysts for artificial photosynthesis.

Amino nitrile-derived conjugated organic polymers can realize the photoreduction of CO2 with water to CO without H2 generation efficiently.  相似文献   

5.
Zusammenfassung Die vorliegende Arbeit beschreibt ein neues Verfahren zur gas-chromatographischen Simultananalyse von N2, O2, CO, CO2, N2O, SO2, CH4, C2H4 und C2H6 im Konzentrations-bereich von 10% bis 10 ppm ohne Voranreicherung. Die temperaturprogrammierte Trennung der Einzelkomponenten erfolgt nach Vorsäulensplitting auf zwei parallel geschalteten Säulen. Zur Emittlung der Retentionszeiten und der Peakflächen werden zwei voneinander unabhängige Ultraschalldetektoren verwendet, deren Analogsignale nach Digitalisierung in einem Mikrocomputer verarbeitet werden. Instrumentierung und chromatographische Einzelheiten werden beschrieben und diskutiert.
Simultaneous gas chromatographic determination of N2, O2, CO, CO2, N2O, SO2, CH4, C2H4 and C2H6 at the ppm-level. Part I
Summary A new procedure for the simultaneous determination of N2, O2, CO, CO2, N2O, SO2, CH4, C2H4 and C2H6 by gas chromatography is described. Concentrations from 10% down to 10 ppm can be determined without preconcentration. After a pre-column splitting the individual compounds of the sample are separated by a uniform temperature program on two different columns in parallel. Detection of the effluents is achieved by two individual ultrasonic detectors, the data from which are processed in a micro-computer. Instrumentation and gas chromatographic details are described and discussed.
  相似文献   

6.
There is increasing interest in capturing H2 generated from renewables with CO2 to produce methanol. However, renewable hydrogen production is expensive and in limited quantity compared to CO2. Excess CO2 and limited H2 in the feedstock gas is not favorable for CO2 hydrogenation to methanol, causing low activity and poor methanol selectivity. Now, a class of Rh-In catalysts with optimal adsorption properties to the intermediates of methanol production is presented. The Rh-In catalyst can effectively catalyze methanol synthesis but inhibit the reverse water-gas shift reaction under H2-deficient gas flow and shows the best competitive methanol productivity under industrially applicable conditions in comparison with reported values. This work demonstrates a strong potential of Rh-In bimetallic composition, from which a convenient methanol synthesis based on flexible feedstock compositions (such as H2/CO2 from biomass derivatives) with lower energy cost can be established.  相似文献   

7.
Our groups studies on Cu/ZnO-based catalysts for methanol synthesis via hydrogenation of CO2 and for the water-gas shift reaction are reviewed. Effects of ZnO contained in supported Cu-based catalysts on their activities for several reactions were investigated. The addition of ZnO to Cu-based catalyst supported on Al2O3, ZrO2 or SiO2 improved its specific activity for methanol synthesis and the reverse water-gas shift reaction, but did not improve its specific activity for methanol steam reforming and the water-gas shift reaction. Methanol synthesis from CO2 and H2 over Cu/ZnO-based catalysts was extensively studied under a joint research project between National Institute for Resources and Environment (NIRE; one of the former research institutes reorganized to AIST) and Research Institute of Innovative Technology for the Earth (RITE). It was suggested that methanol should be produced via the hydrogenation of CO2, but not via the hydrogenation of CO, and that H2O produced along with methanol should greatly suppress methanol synthesis. The Cu/ZnO-based multicomponent catalysts such as Cu/ZnO/ZrO2/Al2O3 and Cu/ZnO/ZrO2/Al2O3/Ga2O3 were highly active for methanol synthesis from CO2 and H2. The addition of a small amount of colloidal silica to the multicomponent catalysts greatly improved their long-term stability during methanol synthesis from CO2 and H2. The purity of the crude methanol produced in a bench plant was 99.9 wt% and higher than that of the crude methanol from a commercial methanol synthesis from syngas. The water-gas shift reaction over Cu/ZnO-based catalysts was also studied. The activity of Cu/ZnO/ZrO2/Al2O3 catalyst for the water-gas shift reaction at 523 K was less affected by the pre-treatments such as calcination and treatment in H2 at high temperatures than that of the Cu/ZnO/Al2O3 catalyst. Accordingly, the Cu/ZnO/ZrO2/Al2O3 catalyst was considered to be more suitable for practical use for the water-gas shift reaction. The Cu/ZnO/ZrO2/Al2O3 catalyst was also highly active for the water-gas shift reaction at 673 K. Furthermore, a two-stage reaction system composed of the first reaction zone for the water-gas shift reaction at 673 K and the second reaction zone for the reaction at 523 K was found to be more efficient than a one-stage reaction system. The addition of a small amount of colloidal silica to a Cu/ZnO-based catalyst greatly improved its long-term stability in the water-gas shift reaction in a similar manner as in methanol synthesis from CO2 and H2.  相似文献   

8.
Electrochemical reduction of carbon dioxide (CO2) to CO is regarded as an efficient method to utilize the greenhouse gas CO2, because the CO product can be further converted into high value‐added chemicals via the Fisher–Tropsch process. Among all electrocatalysts used for CO2‐to‐CO reduction, Au‐based catalysts have been demonstrated to possess high selectivity, but their precious price limits their future large‐scale applications. Thus, simultaneously achieving high selectivity and reasonable price is of great importance for the development of Au‐based catalysts. Here, we report Ag@Au core–shell nanowires as electrocatalyst for CO2 reduction, in which a nanometer‐thick Au film is uniformly deposited on the core Ag nanowire. Importantly, the Ag@Au catalyst with a relative low Au content can drive CO generation with nearly 100 % Faraday efficiency in 0.1 m KCl electrolyte at an overpotential of ca. ?1.0 V. This high selectivity of CO2 reduction could be attributed to a suitable adsorption strength for the key intermediate on Au film together with the synergistic effects between the Au shell and Ag core and the strong interaction between CO2 and Cl? ions in the electrolyte, which may further pave the way for the development of high‐efficiency electrocatalysts for CO2 reduction.  相似文献   

9.
The electrochemical carbon dioxide reduction reaction (CO2RR) to produce synthesis gas (syngas) with tunable CO/H2 ratios has been studied by supporting Pd catalysts on transition metal nitride (TMN) substrates. Combining experimental measurements and density functional theory (DFT) calculations, Pd‐modified niobium nitride (Pd/NbN) is found to generate much higher CO and H2 partial current densities and greater CO Faradaic efficiency than Pd‐modified vanadium nitride (Pd/VN) and commercial Pd/C catalysts. In‐situ X‐ray diffraction identifies the formation of PdH in Pd/NbN and Pd/C under CO2RR conditions, whereas the Pd in Pd/VN is not fully transformed into the active PdH phase. DFT calculations show that the stabilized *HOCO and weakened *CO intermediates on PdH/NbN are critical to achieving higher CO2RR activity. This work suggests that NbN is a promising substrate to modify Pd, resulting in an enhanced electrochemical conversion of CO2 to syngas with a potential reduction in precious metal loading.  相似文献   

10.
Steady-state potentials of various platinum electrodes are measured in cells containing electrolyte ZrO2+ Y2O3(10 mol %) in the temperature range 673–773 K in binary equilibrium gas mixtures N2+ O2and CO + CO2, as well as in four-component nonequilibrium gas mixtures N2+ O2+ CO2+ CO containing 0–3 vol % CO and 0–10 vol % O2. Adding CO to a gas mixture makes the electrode potential deviate from equilibrium, which is explained by chemisorption of CO on the electrode. The oxygen, which is adsorbed on platinum, interacts with CO; as a result, CO2undergoes desorption and the surface concentration of CO drops.  相似文献   

11.
Summary: The separation of H2/CO2 is technologically important to produce the next generation fuel source, hydrogen, from synthesis gas. However, the separation efficiency achieved by polymeric membranes is usually very low because of both unfavourable diffusivity selectivity and solubility selectivity between H2 and CO2. A series of novel diamino‐modified polyimides has been discovered to enhance the separation capability of polyimide membranes especially for H2 and CO2 separation. Both pure gas and mixed gas tests have been conducted. The ideal H2/CO2 selectivity in pure gas tests is 101, which is far superior to other polymeric membranes and is well above the Robeson's upper‐bound curve. Mixed gas tests show an ideal selectivity of 42 for the propane‐1,3‐diamine‐modified polyimide. The lower selectivity is a result of the sorption competition between H2 and the highly condensable CO2 molecules. However, both pure gas and mixed gas data are better than other polymeric membranes and above the Robeson's upper‐bound curve. It is evident that the proposed modification methods can alter the physicochemical structure of polyimide membranes with superior separation performance for H2 and CO2 separation.

Both pure gas and mixed gas separation properties of H2/CO2 for membranes derived from 6FDA‐durene with respect to the upper‐bound curve.  相似文献   


12.
The oxidation of CO in the presence of hydrogen (PROX process) was investigated on bimetallic Au-Rh catalysts at 300–373 K by Fourier transform infrared spectroscopy and mass spectroscopy. The effects of catalyst composition, reaction temperature and composition of the reacting gas mixtures have been studied. The IR studies revealed the formation of bi- and monodentate carbonates, bicarbonates and hydrocarbonates on the catalysts surfaces; these surface species proved to be not involved in the surface reactions. The formation of adsorbed formaldehyde was observed on all surfaces, except 1% (0.25Au+0.75Rh)/TiO2. Adsorbed CO2 (as the surface product of CO oxidation) was not detected on any surface. The presence of both O2 and H2 reduced the surface concentration of CO adsorbed on the metallic sites. Mass spectroscopic analysis of the gas phase showed that gaseous CO2 was formed in the highest amount in the CO+O2 mixture, the presence of H2 suppressed the amount of CO2 produced. This negative effect of H2 was the lowest on the 1% Rh/TiO2 and 1% (0.25Au+0.75Rh)/TiO2 catalysts.  相似文献   

13.
Conversion of CO2 into chemicals is a promising strategy for CO2 utilization, but its intricate transformation pathways and insufficient product selectivity still pose challenges. Exploiting new catalysts for tuning product selectivity in CO2 hydrogenation is important to improve the viability of this technology, where reverse water-gas shift (RWGS) and methanation as competitive reactions play key roles in controlling product selectivity in CO2 hydrogenation. So far, a series of metal-based catalysts with adjustable strong metal–support interactions, metal surface structure, and local environment of active sites have been developed, significantly tuning the product selectivity in CO2 hydrogenation. Herein, we describe the recent advances in the fundamental understanding of the two reactions in CO2 hydrogenation, in terms of emerging new catalysts which regulate the catalytic structure and switch reaction pathways, where the strong metal–support interactions, metal surface structure, and local environment of the active sites are particularly discussed. They are expected to enable efficient catalyst design for minimizing the deep hydrogenation and controlling the reaction towards the RWGS reaction. Finally, the potential utilization of these strategies for improving the performance of industrial catalysts is examined.

A series of metal oxide, phosphate, alloy, and carbide-based catalysts for selective CO2 hydrogenation are summarized, showing their abilities to switch CO2 methanation to RWGS.  相似文献   

14.
Summary A new column system for the isothermal analysis of H2, O2, N2, CO, CH4, CO2, C2H4, C2H6 and C2H2 is described. Higher hydrocarbons and water are backflushed from the system. The use of 13X molecular sieve in a relatively deactivated state shortens the elution times of the light components and improves peak shapes. Both factors enable quantitative analyses to be carried out satisfactorily at lower concentrations than would otherwise be possible. Analysis of all compounds listed can be carried out in eleven minutes. Sparingly activated 13X molecular sieve columns have proved to be very stable and rarely require reactivation.The method of column switching employed avoids the use of mechanical valves in the sample path and is suitable for automatic operation.
Neue Trennsäulenkombination für die GC-Analyse von Gasen (H2, O2, N2, CO, CH4, CO2, C2H4, C2H6, C2H2) unter Anwendung einer nichtmechanischen Säulenschalttechnik
Zusammenfassung Eine neue Trennsäulenkombination zur isothermen Trennung von H2, O2, N2, CO, CH4, CO2, C2H4, C2H6 und C2H2 wird beschrieben. Höhere Kohlenwasserstoffe und Wasser werden rückgespült. Durch Anwendung eines auf relativ niedriger Aktivitätsstufe betriebenen Molekularsiebs 13X wird die Elutionszeit der flüchtigen Komponenten verkürzt und deren Peakform verbessert. Beides erlaubt befriedigende quantitative Analysen im Bereich kleinerer Konzentrationen, als dies mit anderen Systemen möglich ist. Die Analyse eines Gemisches aller oben angeführten Komponenten ist innerhalb von 11 Minuten möglich. Mäßig aktivierte Trennsäulen mit Molekularsieb 13X erwiesen sich als sehr stabil, sie erfordern nur selten eine Reaktivierung. Die hier verwendete Säulenschalttechnik vermeidet die Anwendung mechanischer Umschaltsysteme im Probenweg und ist für eine automatische isotheme Arbeitsweise besonders geeignet.

Une nouvelle combinaison de colonnes pour l'analyse à température constante, par chromatographie en phase gazeuse, de gaz légers (H2, O2, N2, CO, CH4, CO2, C2H4, C2H6 et C2H2) employant un système de commutation de colonnes
Résumé On décrit une nouvelle combinaison de colonnes pour l'analyse à température constante des mélanges de H2, O2, N2, CO, CH4, CO2, C2H4, C2H6 et C2H2. Les hydrocarbures à plus grand nombre de carbones et l'eau sont éliminés du système par contrebalayage. L'emploi de tamis moléculaire 13X dans un état de désactivation relativement élevé permet de réduire les temps d'élution des composants légers et de rendre la forme des pics plus favorable. Ces deux facteurs permettent d'effectuer des analyses quantitatives à des concentrations plus basses que celles possibles normalement. L'analyse de tous les composants cités peut être faite en 11 minutes. Les colonnes de Tamis moléculaire 13X à degré d'activation modéré sont très stables et leur réactivation n'est nécessaire qu'après une longue période d'emploi. La méthode de commutation employée pour les colonnes évite l'utilisation de vannes mécaniques sur le parcours de l'échantillon; elle est convenable pour le fonctionnement automatique.
  相似文献   

15.
The oxidation of CO with oxygen over (0.25–6.4)% CuO/CeO2 catalysts in excess H2 is studied. CO conversion increases and the temperature range of the reaction decreases by 100 K as the CuO content is raised. The maximal CO conversion, 98.5%, is achieved on 6.4% CuO/CeO2 at 150°C. At T > 150°C, the CO conversion decreases as a result of the deactivation of part of the active sites because of the dissociative adsorption of hydrogen. CO is efficiently adsorbed on the oxidized catalyst to form CO-Cu+ carbonyls on Cu2O clusters and is oxidized by the oxygen of these clusters, whereas it is neither adsorbed nor oxidized on Cu0 of the reduced catalysts. The activity of the catalysts is recovered after the dissociative adsorption of O2 on Cu0 at T ~ 150°C. The activation energies of CO, CO2, and H2O desorption are estimated, and the activation energy of CO adsorption yielding CO-Cu+ carbonyls is calculated in the framework of the Langmuir-Hinshelwood model.  相似文献   

16.
This article reviews our recent results on the steam reforming of methanol over a series of NiAl-layered double hydroxide catalysts prepared by the co-precipitation method. The influence of calcination temperature, reaction temperature, pretreatment temperature and atmospheres, inorganic salt ions and steam to methanol ratio on the catalytic performance was studied. The major products for many of the catalysts were H2, CO, CO2 and CH4. However, the product composition varies significantly with the experimental parameters and high selectivity for CO2 and H2 was observed under various conditions, showing the potential of Ni based catalysts for the production of highly pure hydrogen.  相似文献   

17.
This study explores the kinetics, mechanism, and active sites of the CO2 electroreduction reaction (CO2RR) to syngas and hydrocarbons on a class of functionalized solid carbon‐based catalysts. Commercial carbon blacks were functionalized with nitrogen and Fe and/or Mn ions using pyrolysis and acid leaching. The resulting solid powder catalysts were found to be active and highly CO selective electrocatalysts in the electroreduction of CO2 to CO/H2 mixtures outperforming a low‐area polycrystalline gold benchmark. Unspecific with respect to the nature of the metal, CO production is believed to occur on nitrogen functionalities in competition with hydrogen evolution. Evidence is provided that sufficiently strong interaction between CO and the metal enables the protonation of CO and the formation of hydrocarbons. Our results highlight a promising new class of low‐cost, abundant electrocatalysts for synthetic fuel production from CO2.  相似文献   

18.
Conclusions The relation between the thermodesorption parameters for Co, CO2, and H2O and the activity of copper oxide-zinc-aluminum-calcium catalysts has been discussed. It is suggested that high catalytic activity is associated with high CO, and low CO2 and H2O, adsorption on the nonuniform surface. The thermodesorption parameters are determined by the oxidation-reduction treatment to which the catalyst has been subjected.Translated from Izvestiya Akademii Nauk SSSR, Seriya Khimicheskaya, No. 10, pp. 2233–2238, October, 1978.For Communication 12, cf. [1].  相似文献   

19.
Dry chitosan is an excellent candidate for facilitated transport membranes that can be utilized in industrial applications, such as fuel cell operations and other purification processes. This article is the first to report temperature effects on transport properties of CO2, H2, and N2 in a gas mixture typical of such applications. At a feed pressure of 1.5 atm, CO2 permeabilities increased (0.381–26.1 barrers) at temperatures of 20–150 °C with decreasing CO2/N2 (19.7–4.55) and CO2/H2 (3.14–1.71) separation factors. The pressure effect on solubilities and permeabilities were fitted to the extended dual mode model and its corresponding mixed gas permeation model. The dual mode and transport parameters, the sorption heats and the activation energies of Henry's and Langmuir's regimes and their pre‐exponential parameters were determined. The Langmuir's capacity constants were utilized to estimate chitosan's glass transition temperature (CO2: 172 °C, N2: 175 °C, and H2: 171 °C). The activation energies of diffusion in the Henry's law and Langmuir regimes were dependent on the collision diameter of the gases. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 2620–2631, 2007  相似文献   

20.
Direct synthesis of H2O2 solutions by a fuel cell method was reviewed. The fuel cell reactor of [O2, gas-diffusion cathode electrolyte solutions Nafion membrane electrolyte solutions gas-diffusion anode, H2] is very effective for formation of H2O2. The three-phase boundary (O2(g)–electrode(s)–electrolyte(l)) in the gas-diffusion cathode is essential for efficient formation of H2O2. Fast diffusion processes of O2 to the active surface and of H2O2 to the bulk electrolyte solutions are essential for H2O2 accumulation. The maxima H2O2 concentrations of 1.2 M (3.5 wt%) and 2.4 M (7.0 wt%) were accomplished by the heat-treated Mn-OEP/AC electrocatalyst with H2SO4 electrolyte and by the VGCF electrocatalyst with NaOH electrolyte, respectively, under short circuit conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号