首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
O. Oron  L. P. Horwitz   《Physics letters. A》2001,280(5-6):265-270
We show that the problem of radiation reaction may be formulated in a space of five dimensions, with five corresponding gauge fields in the framework of the classical version of a fully gauge covariant form of the Stueckelberg–Feynman–Schwinger covariant mechanics (the zero mode fields of the 0,1,2,3 components correspond to the Maxwell fields). The particles and fields are not confined to their mass shells. We show that in the mass-shell limit, the generalized Lorentz force obtained by means of the retarded Green's functions for the five-dimensional field equations provides the classical Abraham–Lorentz–Dirac radiation reaction terms (with renormalized mass and charge). We also obtain general coupled equations for the orbit and the off-shell dynamical mass during the evolution as well as an autonomous nonlinear equation of third order for the off-shell mass. The theory does not admit radiation if the particle does not move off-shell. The structure of the equations implies that the mass-shell deviation is bounded when the external field is removed.  相似文献   

2.
In relativistic classical and quantum mechanics with Poincaré-invariant parameter, particle worldlines are traced out by the evolution of spacetime events. The formulation of a covariant canonical framework for the evolving events leads to a dynamical theory in which mass conservation is demoted from a priori constraint to the status of conserved Noether current for a certain class of interactions. In pre-Maxwell electrodynamics—the local gauge theory associated with this framework —events induce five local off-shell fields, which mediate interactions between instantaneous events, not between the worldlines which represent entire particle histories. The fifth field, required to compensate for dependence of gauge transformations on the evolution parameter, enables the exchange of mass between particles and fields. In the equilibrium limit, these pre-Maxwell fields are pushed onto the zero-mass shell, but during interactions there is no mechanism regulating the mass that photons may acquire, even when event trajectories evolve far into the spacelike region. This feature of the off-shell formalism requires the application of some ad hoc mechanism for controlling the photon mass in two opposite physical domains: the low energy motion of a charged event in classical Coulomb scattering, and the renormalization of off-shell quantum electrodynamics. In this paper, we discuss a nonlocal, higher derivative correction to the photon kinetic term, which provides regulation of the photon mass in a manner which preserves the gauge invariance and Poincaré covariance of the original theory. We demonstrate that the inclusion of this term is equivalent to an earlier solution to the classical Coulomb problem, and that the resulting quantum field theory is renormalized.  相似文献   

3.
We propose classical equations of motion for a charged particle with magnetic moment, taking radiation reaction into account. This generalizes the Landau–Lifshitz equations for the spinless case. In the special case of spin-polarized motion in a constant magnetic field (synchrotron motion) we verify that the particle does lose energy. Previous proposals did not predict dissipation of energy and also suffered from runaway solutions analogous to those of the Lorentz–Dirac equations of motion.  相似文献   

4.
Despite the many successes of the relativistic quantum theory developed by Horwitz et al., certain difficulties persist in the associated covariant classical mechanics. In this paper, we explore these difficulties through an examination of the classical. Coulomb problem in the framework of off-shell electrodynamics. As the local gauge theory of a covariant quantum mechanics with evolution paratmeter τ, off-shell electrodynamics constitutes a dynamical theory of ppacetime events, interacting through five τ-dependent pre-Maxwell potentials. We present a straightforward solution of the classical equations of motion, for a test event traversing the field induced by a “fixed” event (an event moving uniformly along the time axis at a fixed point in space). This solution is seen to be unsatisfactory, and reveals the essential difficulties in the formalism at the classical levels. We then offer a new model of the particle current—as a certain distribution of the event currents on the worldline—which eliminates these difficulties and permits comparison of classisical off-shell electrodynamics with the standard Maxwell theory. In this model, the “fixed” event induces a Yukawa-type potential, permitting a semiclassical identification of the pre-Maxwell time scale λ with the inverse mass of the intervening photon. Numerical solutions to the equations of motion are compared with the standard Maxwell solutions, and are seen to coincide when λ≳10−6 seconds, providing an initial estimate of this parameter. It is also demonstrated that the proposed model provides a natural interpretation for the photon mass cut-off required for the renormalizability of the off-shell quantum electrodynamics.  相似文献   

5.
We illustrate a metric formulation of Galilean invariance by constructing wave equations with gauge fields. It consists of expressing nonrelativistic equations in a covariant form, but with a five-dimensional Riemannian manifold. First we use the tensorial expressions of electromagnetism to obtain the two Galilean limits of electromagnetism found previously by Le Bellac and Lévy-Leblond. Then we examine the nonrelativistic version of the linear Dirac wave equation. With an Abelian gauge field we find, in a weak field approximation, the Pauli equation as well as the spin—orbit interaction and a part reminiscent of the Darwin term. We also propose a generalized model involving the interaction of the Dirac field with a non-Abelian gauge field; the SU(2) Hamiltonian is given as an example.  相似文献   

6.
7.
We apply a method analogous to the eikonal approximation to the Maxwell wave equations in an inhomogeneous anisotropic medium and geodesic motion in a three dimensional Riemannian manifold, using a method which identifies the symplectic structure of the corresponding mechanics, to the five dimensional generalization of Maxwell theory required by the gauge invariance of Stueckelberg's covariant classical and quantum dynamics. In this way, we demonstrate, in the eikonal approximation, the existence of geodesic motion for the flow of mass in a four dimensional pseudo-Riemannian manifold. These results provide a foundation for the geometrical optics of the five dimensional radiation theory and establish a model in which there is mass flow along geodesics. We then discuss the interesting case of relativistic quantum theory in an anisotropic medium as well. In this case the eikonal approximation to the relativistic quantum mechanical current coincides with the geodesic flow governed by the pseudo-Riemannian metric obtained from the eikonal approximation to solutions of the Stueckelberg–Schrödinger equation. The locally symplectic structure which emerges is that of a generally covariant form of Stueckelberg's mechanics on this manifold.  相似文献   

8.
F. Debbasch  W.A. van Leeuwen 《Physica A》2009,388(9):1818-1834
In a preceding article we presented a general relativistic treatment of the derivation of the Boltzmann equation. The four-momenta occurring in this formalism were all on-shell four-momenta, verifying the mass-shell restriction p2=m2c2. Due to this restriction, the resulting Boltzmann equation, although covariant, turned out to be not manifestly covariant. In the present article we switch from mass-shell momenta to off-shell momenta, and thereby arrive at a Boltzmann equation that is manifestly covariant.  相似文献   

9.
We review the relativistic classical and quantum mechanics of Stueckelberg, and introduce the compensation fields necessary for the gauge covariance of the Stueckelbert–Schrödinger equation. To achieve this, one must introduce a fifth, Lorentz scalar, compensation field, in addition to the four vector fields with compensate the action of the space-time derivatives. A generalized Lorentz force can be derived from the classical Hamilton equations associated with this evolution function. We show that the fifth (scalar) field can be eliminated through the introduction of a conformal metric on the spacetime manifold. The geodesic equation associated with this metric coincides with the Lorentz force, and is therefore dynamically equivalent. Since the generalized Maxwell equations for the five dimensional fields provide an equation relating the fifth field with the spacetime density of events, one can derive the spacetime event density associated with the Friedmann–Robertson–Walker solution of the Einstein equations. The resulting density, in the conformal coordinate space, is isotropic and homogeneous, decreasing as the square of the Robertson–Walker scale factor. Using the Einstein equations, one see that both for the static and matter dominated models, the conformal time slice in which the events which generate the world lines are contained becomes progressively thinner as the inverse square of the scale factor, establishing a simple correspondence between the configurations predicted by the underlying Friedmann–Robertson–Walker dynamical model and the configurations in the conformal coordinates.  相似文献   

10.
The Callan–Giddings–Harvey–Strominger black hole has a spectrum and temperature that correspond to an accelerated reflecting boundary condition in flat spacetime. The beta coefficients are identical to a moving mirror model, where the acceleration is exponential in laboratory time. The center of the black hole is modeled by the perfectly reflecting regularity condition that red-shifts the field modes, which is the source of the particle creation. In addition to computing the energy flux, we find the corresponding moving mirror parameter associated with the black hole mass and the cosmological constant in the gravitational analog system. Generalized to any mirror trajectory, we derive the self-force (Lorentz–Abraham–Dirac), consistently, expressing it and the Larmor power in connection with entanglement entropy, inviting an interpretation of acceleration radiation in terms of information flow. The mirror self-force and radiative power are applied to the particular CGHS black hole analog moving mirror, which reveals the physics of information at the horizon during asymptotic approach to thermal equilibrium.  相似文献   

11.
We consider various gauge fields coupled to the free Dirac equation according to symmetry principles. The gauge fields are treated as classical, unquantized fields. Sufficiently strong time-independent fields may give rise to spontaneous particle creation and to the decay of the symmetric Dirac vacuum into a new ground state with broken symmetry. The vacuum stability of the Dirac field is studied for the cases of external electromagnetic (U(1)), gravitational (Poincaré group including torsion) and Yang-Mills (SU(2)) potentials.  相似文献   

12.
The radiative response of the classical electron is commonly described by the Lorentz–Abraham–Dirac (LAD) equation. Dirac’s derivation of this equation is based on energy and momentum conservation laws and on regularization of the field singularities and infinite energies of the point charge by subtraction of certain quantities: “We... shall try to get over difficulties associated with the infinite energy of the process by a process of direct omission or subtraction of unwanted terms”. To substantiate Dirac’s approach and clarify the mass renormalization, we introduce the point charge as a limit of extended charges contracting to a point; the fulfillment of conservation laws follows from the relativistic covariant Lagrangian formulation of the problem. We derive the relativistic point charge dynamics described by the LAD equation from the extended charge dynamics in a localization limit by a method which can be viewed as a refinement of Dirac’s approach in the spirit of Ehrenfest theorem. The model exhibits the mass renormalization as the cancellation of Coulomb energy with the Poincaré cohesive energy. The value of the renormalized mass is not postulated as an arbitrary constant, but is explicitly calculated. The analysis demonstrates that the local energy–momentum conservation laws yield dynamics of a point charge which involves three constants: mass, charge and radiative response coefficient θθ. The value of θθ depends on the composition of the adjacent potential which generates Poincaré forces. The classical value of the radiative response coefficient is singled out by the global requirement that the adjacent potential does not affect the radiated energy balance and affects only the local energy balance involved in the renormalization.  相似文献   

13.
In this paper, we construct a unified covariant formalism for the classical gauge fields in an equiaffine space. The gauge transformation groups are the Lie groups, induced according to the third Lie theorem by the structure constants. As a result of the gauge transformations, one set of geometric objects is replaced by another. It is confirmed that the differential conservation laws in the equiaffine spaces are a result of the equations of the gauge fields. The particular case when the gauge transformation group is a four-parameter group and is abelian is distinguished. This group corresponds to gauge fields that are induced by an energy-momentum tensor and, which, as a result, are called gravitational fields. As a particular case of the equations of the given gravitational fields, we obtain Einstein's equations with the help of a Lagrangian, which is quadratic with respect to the gravitational field intensities. In concluding, we note the possibility of describing gauge fields, corresponding to nongravitational interactions of vector mesons with nonzero rest mass, without invoking the scalar Higgs mesons. This possibility appears both as a result of the generalization of the Yang-Mills covariant derivative and as a result of including gravitational interactions in the general gauge field formalism.Translated from Izvestiya Vysshykh Uchebnykh Zavedenii, Fizika, No. 12, 47–51, December, 1981.  相似文献   

14.
A gravitational law is proposed on a De Sitter covariant space. Dirac's De Sitter covariant spinning electron equation is generalized to the presence of gravitational fields. The resulting equation differs from the generally covariant Dirac equation by a mass renormalization. The last result is a generalization of that of Gürsey and Lee [2] in case of the homogenous De Sitter metric, and it gives a wider outlook on the significance of this result from the point of view of gauge theory.Dedicated to Achille Papapetrou on the occasion of his retirement.  相似文献   

15.
安树元  叶坚 《大学物理》2004,23(4):16-17
电磁场中相对论带电粒子的经典轨道运动受到洛伦兹力和辐射阻尼力的影响,在一定条件下会达到受力平衡状态.基于洛伦兹一狄拉克方程,本文介绍了计及辐射阻尼力后电磁场中带电单粒子(包括导体中的自由电子)受力平衡条件的一种可能的相对论协变形式.  相似文献   

16.
The Lagrangian and Hamiltonian formulations for the relativistic classical dynamics of a charged particle with dipole moment in the presence of an electromagnetic field are given. The differential conservation laws for the energy-momentum and angular momentum tensors of a field and particle are discussed. The Poisson brackets for basic dynamic variables, which form a closed algebra, are found. These Poisson brackets enable us to perform the canonical quantization of the Hamiltonian equations that leads to the Dirac wave equation in the case of spin 1/2. It is also shown that the classical limit of the squared Dirac equation results in equations of motion for a charged particle with dipole moment obtained from the Lagrangian formulation. The inclusion of gravitational field and non-Abelian gauge fields into the proposed formalism is discussed.Received: 4 June 2005, Published online: 27 July 2005  相似文献   

17.
Chern–Simons (CS) gauge theories in three dimensions and the Poisson sigma model (PSM) in two dimensions are examples of the same theory, if their field equations are interpreted as morphisms of Lie algebroids and their symmetries (on-shell) as homotopies of such morphisms. We point out that the (off-shell) gauge symmetries of the PSM in the literature are not globally well defined for non-parallelizable Poisson manifolds and propose a covariant definition of the off-shell gauge symmetries as left action of some finite-dimensional Lie algebroid.

Our approach allows us to avoid complications arising in the infinite-dimensional super-geometry of the BV- and AKSZ-formalism. This preprint is a starting point in a series of papers meant to introduce Yang–Mills type gauge theories of Lie algebroids, which include the standard YM theory, gerbes, and the PSM.  相似文献   


18.
The Landau–Lifshitz (The Classical Theory of Fields. Elsevier, Oxford 1975) form of the Lorentz–Abraham–Dirac equation in the presence of a plane wave of arbitrary shape and polarization is solved exactly and in closed form. The explicit solution is presented in the particular, paradigmatic cases of a constant crossed field and of a monochromatic wave with circular and with linear polarization.   相似文献   

19.
We present two types of relativistic Lagrangians for the Lorentz–Dirac equation written in terms of an arbitrary world-line parameter. One of the Lagrangians contains an exponential damping function of the proper time and explicitly depends on the world-line parameter. Another Lagrangian includes additional cross-terms consisting of auxiliary dynamical variables and does not depend explicitly on the world-line parameter. We demonstrate that both the Lagrangians actually yield the Lorentz–Dirac equation with a source-like term.  相似文献   

20.
According to an induced-matter approach, Liu and Wesson obtained the rest mass of a typical particle from the reduction of a 5D Klein–Gordon equation to a 4D one. Introducing an extra-dimension momentum operator identified with the rest mass eigenvalue operator, we consider a way to generalize the 4D Dirac equation to 5D. An analogous normal Dirac equation is gained when the generalization reduces to 4D. We find the rest mass of a particle in curved space varies with spacetime coordinates and check this for the case of exact solitonic and cosmological solution of the 5D vacuum gravitational field equations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号