首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The dynamic adsorption of polymer/surfactant mixtures containing poly(ethylene oxide) (PEO) with either tetradecyltrimethylammonium bromide (C(14)TAB) or sodium dodecyl sulfate (SDS) has been studied at the expanding air/water interface created by an overflowing cylinder, which has a surface age of 0.1-1 s. The composition of the adsorption layer is obtained by a new approach that co-models data obtained from ellipsometry and only one isotopic contrast from neutron reflectometry (NR) without the need for any deuterated polymer. The precision and accuracy of the polymer surface excess obtained matches the levels achieved from NR measurements of different isotopic contrasts involving deuterated polymer, and requires much less neutron beamtime. The PEO concentration was fixed at 100 ppm and the electrolyte concentration at 0.1 M while the surfactant concentration was varied over three orders of magnitude. For both systems, at low bulk surfactant concentrations, adsorption of the polymer is diffusion-controlled while surfactant adsorption is under mixed kinetic/diffusion control. Adsorption of PEO is inhibited once the surfactant coverage exceeds 2 μmol m(-2). For PEO/C(14)TAB, polymer adsorption drops abruptly to zero over a narrow range of surfactant concentration. For PEO/SDS, inhibition of polymer adsorption is much more gradual, and a small amount remains adsorbed even at bulk surfactant concentrations above the cmc. The difference in behavior of the two mixtures is ascribed to favorable interactions between the PEO and SDS in the bulk solution and at the surface.  相似文献   

2.
We report on the interactions between a 21-mer quadruplex-forming oligonucleotide bearing human telomere sequence of dG(3)(T(2)AG(3))(3) (G4 DNA) and a positively charged dioctadecyldimethylammonium bromide (DODAB) monolayer at the air-aqueous interface, studied by surface film balance measurements. In the presence of G4 DNA, the π-A isotherm of the cationic Langmuir film shifted to lower molecular areas when compared with the reference isotherm recorded on the subphase containing only 50 mM triethylamine-acetate (TEAA) buffer. The presence of quadruplex-stabilizing metal cations (K(+) or Na(+)) further affected profiles of π-A isotherms. Further insight into processes related to the G4 DNA-monolayer interactions was provided by recording time profiles of the surface pressure of monolayer at a constant mean molecular area. In these experiments G4 DNA and/or metal ions were sequentially injected under the monolayer surface. Results indicated that multistranded assemblies of G4 DNA were formed at the monolayer interface even in the absence of metal ions, which suggested that the charged cationic surface of Langmuir monolayer induced aggregation of guanine-rich DNA strands. The presence of sodium and potassium ions inhibited formation of multi-stranded assemblies through the competitive G-quadruplex formation but to different extent that might be related to the differences in stability and topology of both quadruplexes.  相似文献   

3.
Cationic Gemini surfactant at the air/water interface   总被引:2,自引:0,他引:2  
The surface properties and structures of a cationic Gemini surfactant with a rigid spacer, p-xylyl-bis(dimethyloctadecylammonium bromide) ([C(18)H(37)(CH(3))(2)N(+)CH(2)C(6)H(4)CH(2)N(+)(CH(3))(2)C(18)H(37)],2Br(-), abbreviated as 18-Ar-18,2Br(-1)), at the air/water interface were investigated. It is found that the surface pressure-molecular area isotherms observed at different temperatures do not exhibit a plateau region but display an unusual "kink" before collapse. The range of the corresponding minimum compressibility and maximum compressibility modulus indicates that the monolayer is in the liquid-expanded state. The monolayers were transferred onto mica and quartz plates by the Langmuir-Blodgett (LB) technique. The structures of monolayers at various surface pressures were studied by atomic force microscopy (AFM) and UV-vis spectroscopy, respectively. AFM measurements show that at lower surface pressures, unlike the structures of complex or hybrid films formed by Gemini amphiphiles with DNA, dye, or inorganic materials or the Langmuir film formed by the nonionic Gemini surfactant, in this case network-like labyrinthine interconnected ridges are formed. The formation of the structures can be interpreted in terms of the spinodal decomposition mechanism. With the increase of the surface pressure up to 35 mN/m, surface micelles dispersed in the network-like ridges gradually appear which might be caused by both the spinodal decomposition and dewetting. The UV-vis adsorption shows that over the whole range of surface pressures, the molecules form a J-aggregate in LB films, which implies that the spacers construct a pi-pi aromatic stacking. This pi-pi interaction between spacers and the van der Waals interaction between hydrophobic chains lead to the formation of both networks and micelles. The labyrinthine interconnected ridges are formed first because of the rapid evaporation of solvent during the spreading processes; with increasing surface pressure, some of the alkyl chains reorient from tilting to vertical, forming surface micelles dispersed in the network-like ridges due to the strong interaction among film molecules.  相似文献   

4.
Drop and bubble shape tensiometry experiments are performed at the water/air and water/hexane interfaces in order to get more information about the differences in the adsorption layer structure of mixed protein/surfactant systems. For mixtures of β-lactoglobulin and sodium dodecyl sulphate the adsorption at the water/air interface is essentially a competitive process between protein/surfactant complexes and free surfactant molecules, while the water/oil interface is essentially covered by the complexes.  相似文献   

5.
Polymer/surfactant interactions at the air/water interface   总被引:1,自引:0,他引:1  
The development of neutron reflectometry has transformed the study and understanding of polymer/surfactant mixtures at the air/water interface. A critical assessment of the results from this technique is made by comparing them with the information available from other techniques used to investigate adsorption at this interface. In the last few years, detailed information about the structure and composition of adsorbed layers has been obtained for a wide range of polymer/surfactant mixtures, including neutral polymers and synthetic and naturally occurring polyelectrolytes, with single surfactants or mixtures of surfactants. The use of neutron reflectometry together with surface tensiometry, has allowed the surface behaviour of these mixtures to be related directly to the bulk phase behaviour. We review the broad range of systems that have been studied, from neutral polymers with ionic surfactants to oppositely charged polyelectrolyte/ionic surfactant mixtures. A particular emphasis is placed upon the rich pattern of adsorption behaviour that is seen in oppositely charged polyelectrolyte/surfactant mixtures, much of which had not been reported previously. The strong surface interactions resulting from the electrostatic attractions in these systems have a very pronounced effect on both the surface tension behaviour and on adsorbed layers consisting of polymer/surfactant complexes, often giving rise to significant surface ordering.  相似文献   

6.
External reflection FTIR spectroscopy and surface pressure measurements were used to compare conformational changes in the adsorbed structures of three globular proteins at the air/water interface. Of the three proteins studied, lysozyme, bovine serum albumin and beta-lactoglobulin, lysozyme was unique in its behaviour. Lysozyme adsorption was slow, taking approximately 2.5 h to reach a surface pressure plateau (from a 0.07 mM solution), and led to significant structural change. The FTIR spectra revealed that lysozyme formed a highly networked adsorbed layer of unfolded protein with high antiparallel beta-sheet content and that these changes occurred rapidly (within 10 min). This non-native secondary structure is analogous to that of a 3D heat-set protein gel, suggesting that the adsorbed protein formed a highly networked interfacial layer. Albumin and beta-lactoglobulin adsorbed rapidly (reaching a plateau within 10 min) and with little change to their native secondary structure.  相似文献   

7.
An experimental study on colloidal aggregation in two dimensions is presented. This study shows that a high amount of electrolyte concentration is necessary to screen the particle interactions and to induce the aggregation process. Our results indicate that the stability of the colloidal particles, with a diameter of 735 nm, increases when they are trapped at the air-water interface. The reason for this stability is the existence of long-range repulsive interactions between the external parts of the particles that are propagated at the air phase. The subphase electrolyte concentration that separates the slow aggregation rate region from the fast aggregation rate region, the critical coagulation concentration (C.C.C.), has been determined for counterions with a different valence. Two regimes can be distinguished: at low salt concentration the aggregation process becomes slower and the aggregation is reaction limited. At high ionic strength the repulsive interactions between the immersed part of the particles are very weak and the aggregation rate tends to grow. However, because of the aerial repulsive interactions, pure diffusion-limited cluster aggregation is never found.  相似文献   

8.
Atomistic molecular dynamics (MD) simulations have been carried out to investigate the physical properties of monolayers of monododecyl diethylene glycol (C(12)E(2)) surfactants adsorbed at the oil/water and air/water interfaces. The study shows that the surfactant molecules exhibit more extended conformations with a consequent increase of the thickness of the monolayer in the presence of the oil medium. It is noticed that the hydrocarbon tails of the surfactants are more vertically oriented at the oil/water interface. Interestingly, we notice that the presence of the oil medium has a strong influence in restricting both the translational and reorientational motions of the water molecules present in the hydration layer close to the surfactant headgroups.  相似文献   

9.
A series of new dimeric surfactants, twin-tailed gemini surfactants, 2(12)-s-2(12), were successfully prepared and characterized, and their monolayer films investigated by the measurement of surface pressure-area (π-A) and surface pressure-time (π-t) isotherms at the air/water interface by a Langmuir film balance. Compared to their monomeric counterparts, their collapse pressure (γcollapse) is smaller, whilst all the molecular area parameters are larger. The limited area (Alimited) and the initial area (Ainitial) of these twin-tailed gemini surfactants change with increasing spacer length s, and the surface pressure decreases with increasing time. It was also found that the higher the initial surface pressure, the larger the attenuation.   相似文献   

10.
Dynamic interfacial tensiometry, gauged by axisymmetric drop shape analysis of static drops or bubbles, provides useful information on surfactant adsorption kinetics. However, the traditional pendant-drop methodology is not readily amenable to the study of desorption kinetics. Thus, the question of sorption reversibility is difficult to assess by this technique. We extend classical pendant/sessile drop dynamic tensiometry by immersing a sessile bubble in a continuously mixed optical cell. Ideal-mixed conditions are established by stirring and by constant flow through the cell. Aqueous surface-active-agent solutions are either supplied to the cell (loading) or removed from the cell by flushing with water (washout), thereby allowing study of both adsorption and desorption kinetics. Well-mixed conditions and elimination of any mass transfer resistance permit direct identification of sorption kinetic barriers to and from the external aqueous phase with time constants longer than the optical-cell residence time. The monodisperse nonionic surfactant ethoxy dodecyl alcohol (C(12)E(5)), along with cationic cetyltrimethyl ammonium bromide (CTAB) in the presence of added salt, adsorbs and desorbs instantaneously at the air/water interface. In these cases, the experimentally observed dynamic-tension curves follow the local-equilibrium model precisely for both loading and washout. Accordingly, these surfactants below their critical micelle concentrations (CMC) exhibit no detectable sorption-activation barriers on time scales of order a min. However, the sorption dynamics of dilute CTAB in the absence of electrolyte is markedly different from that in the presence of KBr. Here CTAB desorption occurs at local equilibrium, but the adsorption rate is kinetically limited, most likely due to an electrostatic barrier arising as the charged surfactant accumulates at the interface. The commercial, polydisperse nonionic surfactant ethoxy nonylphenol (NP9) loads in good agreement with local-equilibrium theory but shows deviation from the theoretical washout curve, presumably due to slow desorption of solubilized but otherwise water insoluble components. The polymeric nonionic triblock copolymer Pluronic exhibits almost complete irreversible adsorption at the air/water interface over a molecular-weight range from 3 to 14 kDa. Similar irreversible dynamic behavior is observed for adsorption/desorption of the protein bovine serum albumin (BSA) from dilute aqueous solutions at the air/water interface. The new continuous-flow tensiometer (CFT) is a simple, yet powerful, tool to investigate sorption dynamics at fluid/fluid interfaces, especially for larger molecular weight surface-active agents that exhibit significant hindrance to desorption.  相似文献   

11.
The surface tension of the 1H,1H-heptafluoro-1-butanol (FC4OH)–dodecyltrimethylammonium chloride (DTAC) mixed aqueous solution was measured as a function of the total molality of the mixture and the composition of DTAC at 298.15 K under atmospheric pressure.The phase diagram of adsorption (PDA) that gives the composition relation between the aqueous solution and adsorbed film was constructed. It was suggested that the subtle balance between the attractive surfactant cation-OH dipole interaction and the weak dispersion interaction between C–H and C–F chains is crucial for the phase behavior. The phase diagram of adsorbed film (PDAF) showing the composition relation between the different state of adsorbed films demonstrated the phase behavior is significantly dependent on the degree of counter ion binding. Moreover, the possible surface structures at the azeotropes are suggested.  相似文献   

12.
The general theoretical model by Garrett and Joos proposed in 1976 for the estimation of the dilational elasticity of mixed surfactant solutions, and also the theoretical model proposed by Joos for the limiting elasticity of such mixtures, demonstrate quite satisfactory agreement with experimental results obtained from the oscillating bubble shape method for mixtures of a nonionic surfactant and a protein, that is, beta-lactoglobuline and decyl dimethyl phosphine oxide, C10DMPO.  相似文献   

13.
Electric surface potential (V) and surface tension measurements of aqueous solutions of some aliphatic compounds were used to determine the surface activity, orientation of molecules at the water/air interface, effective dipole moments (connected with water molecules, hydrophilic and hydrophobic groups), and local dielectric permittivities of the surface layer.  相似文献   

14.
The composition and properties of the adsorption films of dodecylammonium chloride/sodium dodecyl sulfate at the air/water interface depend on interactions between the film molecules and equilibria in the bulk phase (monomer-micelle and/or monomerprecipitate equilibria).The negative value of surface molecular interaction parameter mon calculated using the regular solution theory indicates strong attractive interactions between adsorbed molecules. Electrostatic interactions between oppositely charged ionic head groups enhance the adsorption of surfactants and decrease the minimum molar area of surfactant molecules at the air/water interface. The addition of an oppositely charged surfactant enhances packing at the air/water interface and transition from a liquid expanded to a liquid condensed state. Surface potential measurements reveal positive values for the mixtures investigated, implying the cationic surfactant ions are closer to the surface than the anionic ones.  相似文献   

15.
In a recent review of this topic [B.C. Garett, Science 303 (2004) 1146] the emphasis was on some recent experiments, in which it was found that some anions accumulate at the air/water interface and not in the bulk, as usually happens to the cations, and on some simulations which explained those positive surface adsorption excesses. Because a large number of these experiments could be explained on the basis of some simple physical models proposed by the authors for the interaction between the ions and the air/water interface [M. Manciu, E. Ruckenstein, Adv. Colloid Interface Sci. 105 (2003) 63; Adv. Colloid Interface Sci. 112 (2004) 109; Langmuir 21 (2005) 11312], those models are reviewed in the present note, the goal being to draw attention to them.  相似文献   

16.
17.
Polyelectrolyte/surfactant mixtures at the air–solution interface   总被引:2,自引:0,他引:2  
This review presents some of the recent developments in our understanding of the behaviour of polyelectrolyte/surfactant mixtures at the air–solution interface. The existence of a strong surface polyelectrolyte/surfactant interaction results in a complex pattern of surface adsorption. Recent studies, using a range of surface sensitive techniques, which include ellipsometry, neutron and X-ray reflectivity, surface tension and interfacial rheology, have considerably enhanced the understanding of their surface behaviour, which can be rationalized in terms of the competition between the formation of surface active polymer/surfactant complexes and solution polymer/surfactant micelle complexes.  相似文献   

18.
The surface tension of the aqueous solution of the binary mixture of 1H,1H-heptafluoro-1-butanol (FC4OH) and dodecyltrimethylammonium bromide (DTAB) was measured as a function of the total molality of the mixture and the composition (mole fraction in the surfactant mixture) of DTAB at 298.15 K under atmospheric pressure to examine the phase behavior in the adsorbed film. The results of the surface tension measurement were analyzed by the thermodynamic procedure proposed by us and the composition of the mixed adsorbed film in equilibrium with their bulk solution was calculated. Three different phases of the adsorbed film appeared by a subtle balance between the attractive interaction of the polar head groups and weak dispersion interaction of the hydrophobic chains. In the low-concentration regime, FC4OH molecules and DTAB molecules form a gaseous film and mix attractively in the whole composition by the long-range ion–dipole attraction between hydrophilic groups. The effect of the attractive dispersion interaction between CH and CF chains became more influential in the expanded film within a restricted composition region, where it should be noted that the interaction between CH and CF is weaker than that between CH chains or between CF chains alone. Furthermore, the adsorbed films at two specific compositions are stabilized by the stoichiometric arrangements of the molecules, which help ion–dipole attraction, in them.  相似文献   

19.
20.
The properties of the complex monolayers composed of cationic gemini surfactants, [C(18)H(37)(CH(3))(2)N(+)-(CH(2))(s)-N(+)(CH(3))(2)C(18)H(37)],2Br(-) (18-s-18 with s = 3, 4, 6, 8, 10 and 12), and ds-DNA or ss-DNA at the air/water interface were in situ studied by the surface pressure-area per molecule (π-A) isotherm measurement and the infrared reflection absorption spectroscopy (IRRAS). The corresponding Langmuir-Blodgett (LB) films were also investigated by the atomic force microscopy (AFM), the Fourier transform infrared spectroscopy (FT-IR), and the circular dichroism spectroscopy (CD). The π-A isotherms and AFM images reveal that the spacer of gemini surfactant has a significant effect on the surface properties of the complex monolayers. As s ≤ 6, the gemini/ds-DNA complex monolayers can both laterally and normally aggregate to form fibril structures with heights of 2.0-7.0 nm and widths of from several tens to ~300 nm. As s > 6, they can laterally condense to form the platform structure with about 1.4 nm height. Nevertheless, FT-IR, IRRAS, and CD spectra, as well as AFM images, suggest that DNA retains its double-stranded character when complexed. This is very important and meaningful for gene therapy because it is crucial to maintain the extracellular genes undamaged to obtain a high transfection efficiency. In addition, when s ≤ 6, the gemini/ds-DNA complex monolayers can experience a transition of DNA molecule from the double-stranded helical structure to a typical ψ-phase with a supramolecular chiral order.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号