首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
The retention behavior of solutes in reversed phase chromatographic system, especially containing hydrophobic ions in mobile phase, has been studied by many authors, but the silanol effect on alkyl-modified silica surface was neglected. Actually, because of stereo hindrance, numerous unreacted (residual) silanol groups, which can interact with some solutes, are left within the bonded phase after the silica surface has be modified. A mixed retention model, which considers adsorbed hydrophobic ions on the bonded phase can decrease the hydrophobicity and mask residual silanol groups, is proposed, based on hydrophobic distribution of neutral solutes, ion-pair distribution of ionic solutes and coulombic attraction between cationic solutes and the dissociated silanols.  相似文献   

2.
Summary A new bonded phase containing both non-polar C8 and polar polyglycol chains was synthesized in two steps. Silica was first silanized with octyltrimethoxysilane and then the intermediate product was reacted with tetraethylene glycol to introduce the polar group. The bonded phase exhibits a selectivity different from that of C8 or C18 reversed phases with a mixed-mode retention mechanism. The silanol effect on the polyglycol-C8 bonded phase was examined with the test mixture proposed by Engelhardt and co-workers. The experimental results indicate that the new bonded phase displays less silanol effect. The observed tailing of some ionizable species resulted mainly from their partial dissociation at the pH values of eluents close to thepK a values of the solutes. Some potential applications of the bonded phase are also given.  相似文献   

3.
Utilizing linear solvation free energy relationship methodology, a novel pyridinium bromide surface confined ionic liquid (SCIL) stationary phase was characterized under normal phase high-performance liquid chromatographic conditions. A limited set of neutral aromatic probe solutes were utilized to rapidly assess the utility of the LSER model, using mobile phases of hexane modified with 2-propanol. The excellent correlation of the global fit across the mobile phase composition range used in this study for the experimental and calculated retention values (R(2)=0.994) indicates that the LSER model is an appropriate model of characterizing this polar bonded phase under normal phase conditions. For a limited subset of compounds, retention on the pyridinium bromide SCIL stationary phase is more highly correlated with that obtained on a cyano column than on a diol column under NP conditions.  相似文献   

4.
ABSTRACT

Selected alkaloids were chromatographed on cyanopropyl-silica thin layers using nonaqueous and aqueous eluents containing various free silanol blocker agents. Because of the strong retention of these basic compounds, nonaqueous eluents containing medium polar diluents, strongly polar modifiers, or aqueous eluents containing organic modifier, water, and silanol blockers (ammonia, diethylamine, and ionic liquid) were required for analysis. Mobile phases containing addition of acids were also tested for separation of investigated alkaloids. The most selective and efficient systems were used in two-dimensional separations of isoquinoline alkaloids’ mixture and plant extracts.  相似文献   

5.
The synthesis and characterization of a zwitterionic stationary phase bonded onto microparticulate silica is described. The bonded zwitterionic phase was characterized by elemental analysis, diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS), and quantitative analysis of the ligands by high performance liquid chromatography (HPLC) following chemical cleavage from the silica backbone. Chromatographic evaluation of this novel bonded phase indicates that it functions as a weak cation exchanger at pH values above 4.5, an anion exchanger at pH values below 7, and as a zwitterionic phase between these two values. The simultaneous separation of a mixture of cationic, anionic and zwitterionic solutes with this novel bonded phase is shown. Using nucleotides as model compounds, a correlation was developed between maximum solute retention and the pH values corresponding to maximum solute/stationary phase zwitterion overlap. The possibility for a quadrupolar retention mechanism of the bonded zwitterionic phase for zwitterionic solutes is explored.  相似文献   

6.
The separation properties of five silica packings bonded with 1-[3-(trimethoxysilyl)propyl]urea in the range of 0–3.67 μmol m−2 were investigated in the hydrophilic interaction chromatography (HILIC) elution mode. An increase of the ligand surface density promoted retention of non-charged polar compounds and even more so for acids. An opposite trend was observed for bases, while the amphoteric compound tyrosine exhibited a U-shaped response profile. An overall partitioning retention mechanism was incompatible with these observations; rather, the substantial involvement of adsorptive interactions was implicated. Support for the latter was provided by column-specific changes in analyte retention and concomitant selectivity effects due to variations of salt concentration, type of salt, pH value, organic modifier content, and column temperature. Silica was more selective for separating compounds differing in charge state (e.g. tyramine vs. 4-hydroxybenzoic acid), while in cases where structural differences of solutes resided in non-charged polar groups (e.g. tyramine vs. 5-hydroxydopamine, nucleoside vs. nucleobase) more selective separations were obtained on bonded phases. Hierarchical cluster analysis of the home-made urea-type and three commercial amide-type bonded packings evinced considerable differences in separation properties. The present data emphasise that the role of the packing material under HILIC elution conditions is hardly just the polar support for a dynamic coating with a water-enriched layer. Three major retention mechanisms are claimed to be relevant on bare silica and the urea-type bonded packings: (i) HILIC-type partitioning, (ii) HILIC-type weak adsorption such as hydrogen bonding between solutes and ligands or solutes and silanols (potentially influenced by individual degrees of solvation, salt bridging, etc.), (iii) strong electrostatic (ionic) solute–silanol interactions (attractive/repulsive). Even when non-charged polar bonded phases are used, solute–silanol interactions should not be discounted, which makes them a prime parameter to be characterised by HILIC column tests. Multi/mixed-mode type separations seem to be common under HILIC elution conditions, associated with a great deal of selectivity increments. They are accessible and controllable by a careful choice of the type of packing, the mobile phase composition, and the temperature.  相似文献   

7.
In this study, we compare the separation of basic drugs on several octadecyl silane bonded silica (ODS) phases and a polybutadiene-coated zirconia (PBD-ZrO2) phase. The retention characteristics were investigated in detail using a variety of cationic drugs as probe solutes. The ODS phases were selected to cover a relatively wide range in silanol activity and were studied with ammonium phosphate eluents at pH 3.0 and 6.0. Compared to any of the ODS phases, the PBD-ZrO2 phase showed very significant differences in selectivities towards these drugs. Due to the presence of both reversed-phase and ion-exchange interactions between the stationary phase and the basic analyte on ODS and PBD-ZrO2, mixed-mode retention takes place to some extent on both types of phases. However, very large differences in the relative contributions from ion-exchange and reversed-phase interactions on the two types of phases led to quite different selectivities. When phosphate is present in the eluent and adsorbs on the surface, the PBD-ZrO2 phase takes on a high negative charge over a wide pH range due to phosphate adsorption on its surface. On ODS phases, ion-exchange interactions result from the interactions between protonated basic compounds and ionized residual silanol groups. Since the pH of the eluent influences the charge state of the silanol groups, the ion-exchange interactions vary in strength depending on pH. At pH 6.0, the ion-exchange interactions are strong. However, at pH 3.0 the ion-exchange interactions on ODS are significantly smaller because the silanol groups are less dissociated at the lower pH. Thus, not only are the selectivities of the ODS and PBD-ZrO2 phases different but quite different trends in retention are observed on these two types of phases as the pH of the eluent is varied. More importantly, by using the large set of "real" basic analytes we show the extreme complexity of the chromatographic processes on the reversed stationary phases. Both the test condition and solute property influence the column performance. Therefore, use of only one or two probe solutes is not sufficient for column ranking.  相似文献   

8.
A novel monolithic silica column that has a polar‐embedded amide‐secondary amine group linking with C16 functionality for RP‐CEC is described. The amide‐secondary aminealkyloxysilane was synthesized by the reaction of 3‐(2‐aminoethylamino) propyltrimethoxysilane with hexadecanoyl chloride. Then, the silylant agent was bonded to the silica monolith matrix to produce hexadecanamide‐secondary amine bonded silica (HDAIS) monolithic column. The electrochromatographic performance of HDAIS monolithic column for the separation of neutral, basic and polar solutes was studied, which was compared to that using the hexadecyl bonded silica monolithic column. The HDAIS monolithic column displayed reduced hydrophobic retention characteristics in the separation of five hydrophobic n‐alkylbenzenes and four polar phenols when compared to the hexadecyl bonded silica monolithic column. A very much reduced silanol activity of HDAIS monolithic column was observed in the separation of test basic mixture including four aromatic amines, atenolol and metoprolol with 10 mM borate buffer (pH 7.5) containing 30% v/v ACN as the mobile phase. The comparison results indicate good performance for both polar and basic mixtures on HDAIS monolithic column in RP‐CEC, and also show promising results for further applications.  相似文献   

9.
Abstract

The recoveries of picloram, picloram-methylester, hexazinone, benzene, and acetophenone from aqueous samples were studied using a commercially available hydrocarbonaceous pre-analysis extraction cartridge, both with and without tetrabutylammonium hydrogen sulfate (TBAHS) in the eluent. Extraction efficiency was found to be dependent on sample loading volume. The results suggest a mixed mechanism of retention involving both “silanophilic” and “hydrophobic” interactions in the absence of tetrabutylammonium ion. The ability of TBAHS to mask surface silanol groups and/or ion-pair with counterionic solutes is invoked to explain the observations. Chromatograms of the solutes obtained on a C18 bonded analytical column in both the presence and absence of TBAHS are also presented.  相似文献   

10.
Plots of the retention factor against mobile phase composition were used to organize a varied group of solutes into three categories according to their retention mechanism on an octadecylsiloxane-bonded silica stationary phase HyPURITY C18 with methanol-water and acetonitrile-water mobile phase compositions containing 10-70% (v/v) organic solvent. The solutes in category 1 could be fit to a general retention model, Eq. (2), and exhibited normal retention behavior for the full composition range. The solutes in category 2 exhibited normal retention behavior at high organic solvent composition with a discontinuity at low organic solvent compositions. The solutes in category 3 exhibited a pronounced step or plateau in the middle region of the retention plots with a retention mechanism similar to category 1 solutes at mobile phase compositions after the discontinuity and a different retention mechanism before the discontinuity. Selecting solutes and appropriate composition ranges from the three categories where a single retention mechanism was operative allowed modeling of the experimental retention factors using the solvation parameter model. These models were then used to predict retention factors for solutes not included in the models. The overwhelming number of residual values [log k (experimental) - log k (model predicted)] were negative and could be explained by contributions from steric repulsion, defined as the inability of the solute to insert itself fully into the stationary phase because of its bulkiness (i.e., volume and/or shape). Steric repulsion is shown to strongly depend on the mobile phase composition and was more significant for mobile phases with a low volume fraction of organic solvent in general and for mobile phases containing methanol rather than acetonitrile. For mobile phases containing less than about 20 % (v/v) organic solvent the mobile phase was unable to completely wet the stationary phase resulting in a significant change in the phase ratio and for acetonitrile (but less so methanol) changes in the solvation environment indicated by a discontinuity in the system maps.  相似文献   

11.
Two stationary phases attached to a silica hydride surface, cholesterol and bidentate C18, are investigated with a number of pharmaceutically related compounds in order to illustrate the various retention mechanisms that are possible for these bonded materials. The test solutes range from hydrophilic to hydrophobic based on log P (octanol/water partition coefficient) and pKa values. The mobile phases consist of acidified (formic and perchloric acid) water/methanol or water/ACN mixtures. Of particular interest are the high organic content mobile phase compositions where the retention would increase if the bonded material was operating in the aqueous normal phase (ANP) mode. Plots of retention factor (k) versus mobile phase composition are used to elucidate the retention mechanism. A number of examples are presented where solutes are retained based on RP, ANP, or dual retention mechanisms. The silica hydride-based stationary phases can also retain compounds in the organic normal phase.  相似文献   

12.
尤慧艳  张维冰  阎超  张玉奎 《色谱》2002,20(3):237-240
 对中性溶质在氰基柱上的毛细管电色谱(CEC)分离特征进行了研究 ,讨论了流动相中有机调节剂种类及其体积分数、缓冲液种类等对溶质迁移速率的影响。通过对样品在氰基柱上的分离行为与其在反相ODS柱和正相SI柱上的分离行为的比较 ,说明中性溶质在氰基柱上的分离机理既具有部分反相特征又具有部分正相特征。受两种机理的影响 ,在不同的操作条件下极性不同的中性溶质在氰基柱上的迁移速率差别很大 ,较一般的正相和反相电中更易出现出峰顺序变化的现象 ,也说明这种分离模式更易于进行分离选择性调节。  相似文献   

13.
聚N-异丙基丙烯酰胺硅胶键合固定相的制备与评价   总被引:1,自引:0,他引:1  
徐荣来  杨同华  董伟 《色谱》2008,26(2):246-249
以3-巯丙基三甲氧基硅烷为偶联剂,将聚N-异丙基丙烯酰胺(PNIPAM)键合到硅胶上,制得了键合固定相(SI-PNIPAM)填料,并用元素分析、红外光谱等对其进行了表征。以甲醇-水为二元流动相,用多环芳烃、碱性物质对该固定相进行了色谱评价,并考察了该固定相的适用pH范围及水解稳定性。结果表明:该固定相具有较好的色谱性能与温敏特性,并且在pH 2.5~7.5时稳定性良好。  相似文献   

14.
The retention of some rifamycins and steroids on diphenyl bonded pre-coated silica gel plates, in relation to the mobile phase used, was examined by thin-layer chromatography. Neat organic solvents, non-aqueous and aqueous binary mixtures were tested as eluents. By comparison of retention data for rifamycins and steroids, respectively, under non-aqueous and aqueous conditions, a dual retention mechanism on this diphenyl phase was found. Interactions with the residual silanol groups seemed to prevail when employing as mobile phase the more lipophilic solvents tested, such as chloroform or dichloromethane, whereas interactions with the aryl groups of the bonded phase prevailed when using high polarity alcohols or aqueous mixtures. As a consequence, by changing the mobile phase, a large variation in selectivity with a concomitant change in retention order of the test compounds was observed.  相似文献   

15.
The elution mechanism of sodium sulfonates on both Deltabond cyanopropyl and bare silica stationary phases with an isocratic mobile phase composed of methanol-modified CO2 wherein an ammonium salt additive was dissolved in the methanol has been studied. The presence of the additive was crucial concerning elution of the sulfonate salts. Solid state 29silicon nuclear magnetic resonance spectroscopy provided some insight concerning the interaction of the mobile phase additive with the silica-based stationary phase. Computational calculations concerning the charge distribution on various ammonium salts were performed in an effort to explain the elution behavior. Ammonium ions are believed to deactivate available silanol sites on both phases. In addition, ammonium ion is speculated to interact with the cyano groups on the bonded phase. For concentrations of additive greater than 2 mM, stationary phase coverage of ammonium ion is anticipated to exceed one monolayer for both bare and bonded silica. The acetate counter-ion is thought to facilitate elution of the anionic sulfonates from the positively charged stationary phase in a pseudo ion exchange mechanism.  相似文献   

16.
The retention behavior of five disubstituted benzene derivatives and two naphthalene derivatives is examined by using a chemically bonded β‐cyclodextrin silica stationary phase with the moiety containing the s‐triazine. The chromatographic results of five disubstituted benzene derivatives and two naphthalene derivatives show that effective separation is achieved on this stationary phase by high‐performance liquid chromatography. The results of the present investigation indicate that the formation of inclusion complexes plays a dominant role in the separation mechanism. However, the selectivity can be significantly enhanced by the n‐n interactions between the s‐triazine ring of the chemically bonded β‐cyclodextrin silica stationary phase and the aromatic ring of solutes. For example, the effective separation of the o‐, m‐, and p‐toluidine isomers on this stationary phase with the moiety containing the s‐triazine ring was better than on that of some β‐cyclodextrin bonded stationary phases without the moiety containing s‐triazine ring.  相似文献   

17.
Summary Extended solubility parameters have been determined for aminopropyl, cyanopropyl and 1,2-dihydroxypropyl propyl ether (diol) normal bonded-phase HPLC columns. Parameters were calculated from both the retention data of solutes (partition model) and empirically determined solvent strengths (adsorption-displacement model). The use of solvent strengths to calculate solubility parameters for these silica-based bonded stationary phases appears to be superior, since this technique avoids many of the problems that arise from their inherent heterogeneity. Normalized solubility parameters were also used to position these columns on a stationary phase selectivity triangle. The amino and cyano phases appear in regions of the tringle expected based on the properties of the pure liquids, but an ether linkage in the diol apparently neutralizes some of the acidity expected from this phase.  相似文献   

18.
新型高效液相色谱酰胺键合固定相的制备与评价   总被引:1,自引:0,他引:1  
将YWG-80硅胶和3-氨基丙基三甲氧基硅烷反应后与2-壬基丁二酰氯反应制得一种新型双齿酰胺键合固定相(BABSP-2)。采用元素分析和傅里叶变换红外光谱表征了键合相;用芳香族化合物溶质和甲醇-水二元流动相,考察了键合相的疏水选择性和亲硅醇基活性;评估了在酸性条件下(pH2.5)的水解稳定性。结果表明:BABSP-2能有效抑制残留硅醇基活性,并具有可比的疏水选择性和较好的水解稳定性。  相似文献   

19.
Poly(ionic liquid)‐modified stationary phases can have multiple interactions with solutes. However, in most stationary phases, separation selectivity is adjusted by changing the poly(ionic liquid) anions. In this work, two poly(ionic liquid)‐modified silica stationary phases were prepared by introducing the cyano or tetrazolyl group on the pendant imidazolium cation on the polymer chains. Various analytes were selected to investigate their mechanism of retention in the stationary phases using different mobile phases. Two poly(ionic liquid)‐modified stationary phases can provide various interactions toward solutes. Compared to the cyano‐functionalized poly(ionic liquid) stationary phase, the tetrazolyl‐functionalized poly(ionic liquid) stationary phase provides additional cation‐exchange and π‐π interactions, resulting in different separation selectivity toward analytes. Finally, applicability of the developed stationary phases was demonstrated by the efficient separation of nonsteroidal anti‐inflammatory drugs.  相似文献   

20.
A novel hydrophilic stationary phase bonded with a zwitter-ionic polymer for HPLC was synthesized. The stationary phase, in combination with a mobile phase containing various salts, was evaluated for its ability to separate water-soluble compounds, such as nucleobases, nucleosides and glycosides. The retention of a large majority of the solutes, except for cytosine, was increased by adding anti-chaotropic ions to the mobile phase. These results suggested that the retention of solutes depended on the thickness of the hydration layer on the stationary phase. In the zwitter-ionic polymer adsorbent, the formation of the hydration layer and the ionicity of the zwitter-ionic group on the stationary phase will be controlled by the properties of the ions added to the mobile phase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号