共查询到19条相似文献,搜索用时 140 毫秒
1.
在1-丁基-3-甲基咪唑四氟硼酸盐离子液体中以氯化苄为引发剂,氯化亚铜/2,2’-联吡啶为催化剂成功实现了丙烯酰胺的原子转移自由基聚合(ATRP)。用IR对聚合物的结构进行了表征,证实聚合物链端具有-Cl端基。考察了引发剂用量、催化剂和配体用量、单体用量和反应时间等因素对丙烯酰胺在离子液体中的原子转移自由基聚合的影响,结果表明,反应时间为1.5 h时转化率达到31.43%,MnGPC=4451,Mw/Mn=1.38。且80 ℃下丙烯酰胺在离子液体中的最佳聚合工艺条件为:单体浓度3 mol/L,引发剂浓度0.010 mol/L,催化剂浓度0.015 mol/L,反应时间1 h。 相似文献
2.
甲基丙烯酸甲酯的原子转移自由基悬浮聚合 总被引:3,自引:0,他引:3
以 1 苯基氯乙烷为引发剂 ,氯化亚铜为催化剂 ,2 ,2 联吡啶为配体 ,外加搅拌 ,氮气保护下进行了甲基丙烯酸甲酯 (MMA)在 80℃下的原子转移悬浮聚合 .结果表明 ,聚合反应符合对单体浓度为一级的动力学关系 .经计算聚合体系的增长自由基浓度为 5 .74× 10 - 8mol L .聚合物分子量随转化率呈线性增加 ,分子量分布较窄 ,Mw Mn 在 1.37~ 1.40之间 .还以AIBN为引发剂 ,在三氯化铁和三苯基膦存在下进行了MMA的反向原子转移本体和悬浮聚合研究 .结果证明本体聚合具有好的可控特征 ,分子量随转化率呈线性增长 ,分子量分布指数在 1.2 7~ 1.31之间 .聚合反应速率较快 ,聚合体系中的增长自由基浓度较高 ,为 1.6 4× 10 - 7mol L .而在此催化体系下的悬浮聚合则完全失去了活性特征 相似文献
3.
离子液体是一种有机盐,在接近室温下呈液状.离子液体是难挥发、极性高的溶剂,它能溶解很多种有机、无机和金属有机化合物.虽然有越来越多的人报道了有关离子液体在有机合成中的应用,但是在聚合过程中的应用却很少.然而在近几年,科学家证明了离子液体在聚合物的合成中的作用很大.在以离子液体为介质的自由基聚合反应中,kp/kt 会增大.尤其是在原子转移自由基聚合中,以离子液体作为溶剂有助于聚合物与残余催化剂的分离.本文主要阐述了原子转移自由基聚合反应的基本原理、特点以及离子液体在原子转移自由基聚合中的应用,并且还介绍了其他研究者的工作和原子转移自由基聚合的发展前景. 相似文献
4.
5.
6.
7.
8.
9.
在0~100℃温度范围内,由原子转移自由基聚合方法,采用助催化和非助催化体系,引发甲基丙烯酸甲酯聚合,利用13CNMR测定聚甲基丙烯酸甲酯的等规度.发现原子转移自由基聚合仍以间同立构为主,随着聚合温度的升高间同立构等规度降低,与通常自由基聚合对有规立构控制特征相似.助催化剂异丙醇铝和活性端羰基配位,对聚合物的立构规整性有一定的影响. 相似文献
10.
11.
Summary: Controlled copolymerization of polar (meth)acrylates with non-polar olefin monomers (1-octene, norbornene, vinylcyclohexane) was studied by ARGET (activators regenerated by electron transfer) ATRP (atom transfer radical polymerization). When a normal ATRP of n-butyl acrylate (nBA) and 1-octene was conducted, the polymerization resulted in relatively low conversion, limited control over the polymerization process and high polydispersity (PDI > 1.6). This was due to formation of a dormant species, by reaction of 1-octene radicals with Cu(II) deactivator, that could not be reactivated. However, in ARGET ATRP with 10 ppm amounts of Cu-based catalyst, higher yields and a better controlled copolymerization was obtained (PDI < 1.4), because the low concentration of Cu(II) deactivator reduced the formation of the non-reactive dormant species. The influence of the amount of Cu catalyst, ligand structure, initiators with different halogens, the reaction temperature, and monomer feed ratio were also investigated for ARGET ATRP. In copolymerization of (meth)acrylates with non-polar alkenes, the level of control and the total conversion in ARGET ATRP were higher than those for normal ATRP. 相似文献
12.
13.
以卤化亚铜(CuX)/1,10-邻二氮菲(phen)配合物为催化剂、2-溴代异丁酸 乙酯(EBiB)为引发剂、十二烷基磺酸钠(SLS)为乳化剂,进行了甲基丙烯酸甲 酯(MMA)的原子转移自由基乳液聚合(ATRP)反应。结果表明,与较高温度(70 - 90 ℃)下的聚合反应相比,室温(25 ℃)时聚合反应有更好的可控性,通过 外加钝化剂的复合催化引发体系CuBr/CuBr_2/phen/EBiB或利用CuCl/phen/EBiB催 化引发体系的“卤素交换反应”,可进一步改善聚合反应的可控性。紫外发光谱测 定结果表明,CuBr/phen配合物在MMA相中的分配倾向随着温度的降低而增大,使得 室温下MMA的乳液ATRP保持了较好的可控性和较快的反应速度。 相似文献
14.
《高分子科学杂志,A辑:纯化学与应用化学》2013,50(4):371-385
A homogeneous reverse atom transfer radical polymerization (RATRP) of methyl methacrylate (MMA) was successfully carried out in N, N-dimethylformamide(DMF) (25%, v/v) at 69°C, using an initiating system azobisisobutyronitrile (AIBN)/CuBr2/N, N, N′, N″, N″-pentamethyldiethylenetriamine (PMDETA). The kinetics of homogeneous solution polymerizations showed linear first-order rate plots, indicating a constant number of growing species throughout the polymerization as well as a negligible contribution of termination or transfer reactions; a linear increase of the number-average molecular weight with conversion, and relatively low polydispersities, but low initiator efficiency. The dependence of the rate of polymerization on the concentrations of initiator, catalyst, ligand and temperature were presented. 相似文献
15.
Mingqiang Ding Xiaowu Jiang Jinying Peng Lifen Zhang Zhenping Cheng Xiulin Zhu 《Macromolecular rapid communications》2015,36(6):538-546
A concept based on diffusion‐regulated phase‐transfer catalysis (DRPTC) in an aqueous‐organic biphasic system with copper‐mediated initiators for continuous activator regeneration is successfully developed for atom transfer radical polymerization (ICAR ATRP) (termed DRPTC‐based ICAR ATRP here), using methyl methacrylate (MMA) as a model monomer, ethyl α‐bromophenylacetate (EBrPA) as an initiator, and tris(2‐pyridylmethyl)amine (TPMA) as a ligand. In this system, the monomer and initiating species in toluene (organic phase) and the catalyst complexes in water (aqueous phase) are simply mixed under stirring at room temperature. The trace catalyst complexes transfer into the organic phase via diffusion to trigger ICAR ATRP of MMA with ppm level catalyst content once the system is heated to the polymerization temperature (75 °C). It is found that well‐defined PMMA with controlled molecular weights and narrow molecular weight distributions can be obtained easily. Furthermore, the polymerization can be conducted in the presence of limited amounts of air without using tedious degassed procedures. After cooling to room temperature, the upper organic phase is decanted and the lower aqueous phase is reused for another 10 recycling turnovers with ultra low loss of catalyst and ligand loading. At the same time, all the recycled catalyst complexes retain nearly perfect catalytic activity and controllability, indicating a facile and economical strategy for catalyst removal and recycling.
16.
Maud Save Gwenaëlle Granvorka Julien Bernard Bernadette Charleux Cdric Boissire David Grosso Clment Sanchez 《Macromolecular rapid communications》2006,27(6):393-398
Summary: Mesoporous silica was used as substrate for the grafting of alkyl halides initiators. The control over the surface‐initiated polymerization of styrene and MMA, in terms of molar mass and molar mass distribution, was successfully achieved using an ATRP mechanism. The occurrence of the polymerization inside the mesopores was confirmed by thermogravimetric analysis.
17.
Severin J. Sigg Farzad Seidi Kasper Renggli Tilana B. Silva Gergely Kali Nico Bruns 《Macromolecular rapid communications》2011,32(21):1710-1715
The hemoprotein horseradish peroxidase (HRP) catalyzes the polymerization of N‐isopropylacrylamide with an alkyl bromide initiator under conditions of activators regenerated by electron transfer atom transfer radical polymerization (ARGET ATRP) in the absence of any peroxide. This is a novel activity of HRP, which we propose to name ATRPase activity. Bromine‐terminated polymers with polydispersity indices (PDIs) as low as 1.44 are obtained. The polymerization follows first order kinetics, but the evolution of molecular weight and the PDI upon increasing conversion deviate from the results expected for an ATRP mechanism. Conversion, and PDI depend on the pH and on the concentration of the reducing agent, sodium ascorbate. HRP is stable during the polymerization and does not unfold or form conjugates.
18.
19.
Yasuyuki Kagawa Masahiro Kawasaki Per B. Zetterlund Hideto Minami Masayoshi Okubo 《Macromolecular rapid communications》2007,28(24):2354-2360
Direct atom transfer radical polymerization (ATRP) of iso‐butyl methacrylate in microemulsion has been performed successfully for the first time. ATRP was performed at 40 °C with different emulsifier systems: i) the cationic emulsifier n‐tetradecyltrimethylammonium bromide (TTAB); and ii) mixed emulsifier systems based on TTAB and the non‐ionic emulsifiers Emulgen 911 or Emulgen 931. All polymerizations proceeded in a controlled/living fashion, and the microemulsions were transparent with particle diameters less than 15 nm. The emulsifier system TTAB/Emulgen 911 exhibited better control than TTAB only. This is proposed to be caused by complex formation between Emulgen 911 in the organic phase and CuBr2 (the deactivator), thus reducing the extent of exit of CuBr2 to the aqueous phase. The more hydrophilic Emulgen 931 did not lead to improved control.