首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 377 毫秒
1.
We study the internal dynamical processes taking place in a granular packing below yield stress. At all packing fractions and down to vanishingly low applied shear, a logarithmic creep is observed. The experiments are analyzed using a viscoelastic model which introduces an internal, time-dependent, fluidity variable. For all experiments, the creep dynamics can be rescaled onto a unique curve which displays jamming at the random-close-packing limit. At each packing fraction, we measure a stress corresponding to the onset of internal granular reorganization and a slowing down of the creep dynamics before the final yield.  相似文献   

2.
Dense slowly evolving or static granular materials exhibit strong force fluctuations even though the spatial disorder of the grains is relatively weak. Typically, forces are carried preferentially along a network of "force chains." These consist of linearly aligned grains with larger-than-average force. A growing body of work has explored the nature of these fluctuations. We first briefly review recent work concerning stress fluctuations. We then focus on a series of experiments in both two- and three-dimension [(2D) and (3D)] to characterize force fluctuations in slowly sheared systems. Both sets of experiments show strong temporal fluctuations in the local stress/force; the length scales of these fluctuations extend up to 10(2) grains. In 2D, we use photoelastic disks that permit visualization of the internal force structure. From this we can make comparisons to recent models and calculations that predict the distributions of forces. Typically, these models indicate that the distributions should fall off exponentially at large force. We find in the experiments that the force distributions change systematically as we change the mean packing fraction, gamma. For gamma's typical of dense packings of nondeformable grains, we see distributions that are consistent with an exponential decrease at large forces. For both lower and higher gamma, the observed force distributions appear to differ from this prediction, with a more Gaussian distribution at larger gamma and perhaps a power law at lower gamma. For high gamma, the distributions differ from this prediction because the grains begin to deform, allowing more grains to carry the applied force, and causing the distributions to have a local maximum at nonzero force. It is less clear why the distributions differ from the models at lower gamma. An exploration in gamma has led to the discovery of an interesting continuous or "critical" transition (the strengthening/softening transition) in which the mean stress is the order parameter, and the mean packing fraction, gamma, must be adjusted to a value gamma(c) to reach the "critical point." We also follow the motion of individual disks and obtain detailed statistical information on the kinematics, including velocities and particle rotations or spin. Distributions for the azimuthal velocity, V(theta), and spin, S, of the particles are nearly rate invariant, which is consistent with conventional wisdom. Near gamma(c), the grain motion becomes intermittent causing the mean velocity of grains to slow down. Also, the length of stress chains grows as gamma-->gamma(c). The 3D experiments show statistical rate invariance for the stress in the sense that when the power spectra and spectral frequencies of the stress time series are appropriately scaled by the shear rate, Omega, all spectra collapse onto a single curve for given particle and sample sizes. The frequency dependence of the spectra can be characterized by two different power laws, P proportional, variant omega(-alpha), in the high and low frequency regimes: alpha approximately 2 at high omega; alpha<2 at low omega. The force distributions computed from the 3D stress time series are at least qualitatively consistent with exponential fall-off at large stresses. (c) 1999 American Institute of Physics.  相似文献   

3.
静态堆积颗粒中的力链分布   总被引:21,自引:0,他引:21       下载免费PDF全文
Sun Qi-Cheng  王光谦 《物理学报》2008,57(8):4667-4674
颗粒物质是由众多离散颗粒组成的软凝聚态物质,涉及多个物理层次结构和机制,是多尺度问题. 首先阐述了颗粒物质多尺度力学的研究框架,指出颗粒间接触力链构成的细观尺度是核心,颗粒物质显示出的独特静态堆积特性和动态流变特性都与细观尺度力链的复杂演变规律直接相关. 围绕着定量描述力链特征这一目标,采用严格的球形颗粒Hertz法向接触理论和Mindlin-Deresiewicz切向接触理论,对重力作用下12000个球心共面的二维等径颗粒静态堆积进行了离散动力学模拟,对力链分布特征、接触力规律等做了量化分析,考察了颗粒 关键词: 颗粒物质 力链 离散模型 多尺度力学  相似文献   

4.
张昱  韦艳芳  彭政  蒋亦民  段文山  厚美瑛 《物理学报》2016,65(8):84502-084502
本文发现在测量误差内颗粒物质的下列三个临界角度相等: 1)从直径为D的倾斜孔洞流出的Beverloo颗粒流的流量开始停止的临界倾角θc 向大孔径极限线性外推θc∞≡θc(D→∞) 的补角θs∞= 180°-θc∞;2) 从靠近堆顶的点源向光滑底板缓慢下落颗粒形成的圆锥形堆的休止角θr; 3) 直接剪切矩形颗粒固体测得的库仑内摩擦角φ. 该结果倾向支持倾斜孔洞和颗粒堆自由表面的固-液转变与颗粒固体内部的库仑屈服均来自材料的同一临界性质. 由于三种情况样品的内部应力和变形等都是目前还远不能定量分析的复杂非均匀分布, 我们仅从定性角度对此给出一些讨论.  相似文献   

5.
In this paper we will suggest a model for the packing properties and phase behaviour of a granular material whose constituents are elongated in nature, using the concepts of configurational statistical mechanics. We will show that, depending upon the shape of the grains, the systems need not necessarily undergo a discontinuous first-order phase transition (even at minimum close packing). We will also briefly discuss the relationship between this model and more conventional models, such as Onsager's hard rod model.  相似文献   

6.
We relate the pressure dip observed at the bottom of a sand pile prepared by successive avalanches to the stress profile obtained on sheared granular layers in response to a localized vertical overload. We show that, within a simple anisotropic elastic analysis, the skewness and the tilt of the response profile caused by shearing provide a qualitative agreement with the sand pile dip effect. We conclude that the texture anisotropy produced by the avalanches is in essence similar to that induced by a simple shearing --albeit tilted by the angle of repose of the pile. This work also shows that this response function technique could be very well adapted to probe the texture of static granular packing.  相似文献   

7.
Elastic and dissipative properties of granular assemblies under uniaxial compression are studied both experimentally and by numerical simulations. Following a novel compaction procedure at varying oscillatory pressures, the stress response to a step strain reveals an exponential relaxation followed by a slow logarithmic decay. Simulations indicate that the latter arises from the coupling between damping and collective grain motion predominantly through sliding. We characterize an analogous "glass transition" for packed grains, below which the system shows aging in time-dependent sliding correlation functions.  相似文献   

8.
This paper considers the segregation of a granular mixture in a rotating drum. Extending a recent kinematic model for grain transport on sandpile surfaces to the case of rotating drums, an analysis is presented for radial segregation in the rolling regime, where a thin layer is avalanching down while the rest of the material follows rigid body rotation. We argue that segregation is driven not just by differences in the angle of repose of the species, as has been assumed in earlier investigations, but also by differences in the size and surface properties of the grains. The cases of grains differing only in size (slightly or widely) and only in surface properties are considered, and the predictions are in qualitative agreement with observations. The model yields results inconsistent with the assumptions for more general cases, and we speculate on how this may be corrected. Received 4 June 1999 and Received in final form 28 September 1999  相似文献   

9.
Experimental investigations on the shape of a heap formed in a Hele Shaw cell either on a flat base or in a two-dimensional silo are presented. We have focused our attention on the shape dependence on mass flux and initial energy of particles poured into the cell. Two kinds of granular media are considered: glass beads and sand and we shall point out their different behaviors. We described the variations of the angle of repose and of the size of the tail as a function of the experimental parameters. We also report the time evolution of the angle of repose during the formation of the heap. Received 28 September 1998 and Received in final form 20 January 1999  相似文献   

10.
We report free-surface waves in granular flows near boundaries in an inclined chute. The chevron-shaped traveling waves spontaneously develop at inclinations close to the angle of repose for both steady and accelerating flows. Two distinct regimes are characterized by internal angle and frequency variations. Experimental measurements indicate that subsurface circulation driven by velocity gradients near frictional walls plays a central role in the pattern formation mechanism, suggesting that wave generation is controlled by the granular analog of a fluid boundary layer.  相似文献   

11.
We study experimentally the creeping penetration of guest (percolating) grains through densely packed granular media in two dimensions. The evolution of the system of the guest grains during the penetration is studied by image analysis. To quantify the changes in the internal structure of the packing, we use Voronoï tessellation and a certain shape factor which is a clear indicator of the presence of different underlying substructures (domains). We first consider the impact of the effective gravitational acceleration on upward penetration of grains. It is found that the higher effective gravity increases the resistance to upward penetration and enhances structural organization in the system of the percolating grains. We also focus our attention on the dependence of the structural rearrangements of percolating grains on some parameters like polydispersity and the initial packing fraction of the host granular system. It is found that the anisotropy of penetration is larger in the monodisperse case than in the bidisperse one, for the same value of the packing fraction of the host medium. Compaction of initial host granular packing also increases anisotropy of penetration of guest grains. When a binary mixture of large and small guest grains is penetrated into the host granular medium, we observe size segregation patterns.  相似文献   

12.
We outline a statistical-mechanical theory of granular materials. Stress propagation and force fluctuations in static granular media are still poorly understood. We develop the statistical-mechanical theory that delivers the fundamental equations of stress equilibrium. The formalism is based on the assumptions that grains are rigid, cohesionless, and that friction is perfect. Since grains are assumed perfectly rigid, no strain or displacement field can enter the equations for static equilibrium of the stress field. The complete system of equations for the stress tensor is derived from the equations of intergranular force and torque balance, given the geometric specification of the material. These new constitutive equations are indeed fundamental and are based on relations between various components of the stress tensor within the material, and depend on the topology of the granular packing. The problem of incorporating into the formalism the "no tensile forces" constraint is considered. The compactivity concept is reviewed. We discuss the relation between the concept of compactivity and the problem of stress transmission. (c) 1999 American Institute of Physics.  相似文献   

13.
Two-dimensional granular flow in a channel with small exit is studied by molecular dyhamics simulations. We firstly define a key area near the exit, which is considered to be the choke area of the system. Then we observe the time variation of the local packing fraction and flow rate in this area for several fixed inflow rate, and find that these quantities change abruptly when the transition from dilute flow state to dense flow state happens. A relationship between the local flow rate and the local packing fraction in the key area is also given. The relationship is a continuous function under the fixed particle number condition, and has the characteristic that the flow rate has a maximum at a moderate packing fraction and the packing fraction is terminated at a high value with negative slope. By use of the relationship, the properties of the flow states under the fixed inflow rate condition are discussed in detail, and the discontinuities and the complex time variation behavior observed'in the preexisting works are naturally explained by a stochastic process.  相似文献   

14.
15.
A granular medium submitted to vertical tapping reveals simultaneously compaction and convection. The two phenomena are directly coupled and their dynamics can be quantified by a characteristic compaction time and by an estimation of the convective downhill speed along the wall. A remarkable change of behavior is observed around the liftoff acceleration threshold of the whole packing, with a drastic slowing down of both dynamics below this threshold. Above it, a collective shock wave densifies the packing at each tap, whereas, below it, cumulative localized rearrangements will compact the entire system in the long time range.  相似文献   

16.
Contact forces in a granular packing   总被引:1,自引:0,他引:1  
We present the results of a systematic numerical investigation of force distributions in granular packings. We find that all the main features of force transmission previously established for two-dimensional systems of hard particles hold in three-dimensional systems and for soft particles, too. In particular, the probability distribution of normal forces falls off exponentially for forces above the mean force. For forces below the mean, this distribution is either a decreasing power law when the system is far from static equilibrium, or nearly uniform at static equilibrium, in agreement with recent experiments. Moreover, we show that the forces below the mean do not contribute to the shear stress. The subnetwork of the contacts carrying a force below the mean thus plays a role similar to a fluid surrounding the solid backbone composed of the contacts carrying a force above the mean. We address the issue of the computation of contact forces in a packing at static equilibrium. We introduce a model with no local simplifying force rules, that allows for an exact computation of contact forces for given granular texture and boundary conditions. (c) 1999 American Institute of Physics.  相似文献   

17.
Noncohesive granular media exhibit complex responses to sudden impact that often differ from those of ordinary solids and liquids. We investigate how this response is mediated by the presence of interstitial gas between the grains. Using high-speed x-ray radiography we track the motion of a steel sphere through the interior of a bed of fine, loose granular material. We find a crossover from nearly incompressible, fluidlike behavior at atmospheric pressure to a highly compressible, dissipative response once most of the gas is evacuated. We discuss these results in light of recent proposals for the drag force in granular media.  相似文献   

18.
An investigation into the granular temperature distributions of a binary vibrofluidized granular bed has been conducted using positron emission particle tracking. By repeating each experiment with the tracer selected in turn from the two size components, the granular temperature and packing fraction distributions for each phase were determined. It was found that, for a range of size fractions, the granular temperature of the larger particles was higher than that of the smaller diameter grains, a result which was supported by a simple theoretical analysis based on the steady state energy equation.  相似文献   

19.
Impact experiments in granular media are usually performed with solid projectiles that do not fragment at all. Contrastingly, we study here the morphology produced by the impact of spherical granular projectiles whose structure is utterly lost after collision. Simple and complex craters are observed, depending on the packing fraction of the balls. Their diameters D and depths z are analyzed as a function of the drop height h. We find the same power law D ∝ h(1/4) obtained with solid spheres, but a discontinuity at a certain threshold height, related to the cohesive energy of the projectiles, shows up. Counterintuitively, instead of a monotonic increase with the collisional energy, z becomes constant above this threshold.  相似文献   

20.
In this paper we will attempt to address the problem of the packing properties of granular materials composed of irregularly shaped grains (using configurational statistical mechanics). In particular, we will develop a model for a system of irregular grains based upon perturbing a packing of mono- or poly-disperse spheres. In the mono-disperse case we will show that the system packs less densely than a packing of perfect spheres, except when local correlations between configurations of grains are taken into account. The opposite is found to be true for a perturbation expansion based upon poly-disperse spheres. Finally we will show that for a bi-disperse packing of spheres phase segregation occurs for any size ratio and discuss whether this is to be expected.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号