首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A laboratory batch study has been performed to study the effect of various physic-chemical factors such as initial metal ion concentration, solution pH, and amount of adsorbent, contact time and temperature on the adsorption characteristics of zinc (Zn2+) metal ions onto kaolin. It has been found that the amount of adsorption of zinc metal ion increases with initial metal ion concentration, contact time, solution pH but decreases with the amount of adsorbent and temperature of the system. Kinetic experiments clearly indicate that adsorption of zinc metal ion (Zn2+) on kaolin is a two steps process: a very rapid adsorption of zinc metal ion to the external surface is followed by possible slow decreasing intra-particle diffusion in the interior of the adsorbent which has also been confirmed by intra-particle diffusion model. The equilibrium time is found to be in the order of 60 min. Overall the kinetic studies showed that the zinc adsorption process followed pseudo-second-order kinetics among pseudo-first-order and intra-particle diffusion model. The different kinetic parameters including rate constant are determined at different initial metal ion concentration, solution pH, amount of adsorbent and temperature respectively. The equilibrium adsorption results are analyzed by both Langmuir and Freundlich models to determine the mechanistic parameters associated with the adsorption process. The value of separation factor, RL from Langmuir equation also gives an indication of favorable adsorption. Finally thermodynamic parameters are determined at three different temperatures and it has been found that the adsorption process is exothermic due to negative ΔH° accompanied by decrease in entropy change and Gibbs free energy change (ΔG°).  相似文献   

2.
In recent decades, great progress has been made in the application of adsorption processes to mitigate water pollution by hazardous metals. However, developing a highly efficient adsorbent is essential if the adsorption process is to be successfully applied in practical applications. In this study, a CuMgAl-layered double hydroxides/montmorillonite nanocomposite (CuMgAl-LDH/MMt) was prepared, characterized, and then used as a novel adsorbent for adsorption of Cd2+ ions from wastewater. The effects of initial pH, adsorbent dosage, agitation speed, particle size, contact time, initial Cd2+ concentration, and temperature on the pollutant removal efficiency were analyzed. An isotherm model reading revealed that the results of the experimental work were a good fit with the Freundlich model. The maximum adsorption capacity was reached at 174.87 mg/g under optimal conditions (pH 5, dosage of 0.02 g/l, agitation speed of 150 rpm, and particle size of 87 μm) at 50 ppm after 120 min of adsorption time. Kinetic studies showed that pseudo-second-order models were best fitted to the adsorption data, indicating heterogeneous adsorption of Cd2+ ions onto multilayer CuMgAl-LDH/MMt sites, and that the adsorption process is primarily chemical adsorption. Thermodynamic parameters (ΔSo, ΔHo, and ΔGo) demonstrated that Cd2+ adsorption onto adsorbent was exothermic and spontaneous. Moreover, the synthesized adsorbent can be recovered after five consecutive cycles with a minimal reduction in the adsorption ability of 29.56 %. The study showed that specific heavy metals can be removed from aqueous solution by a newly prepared adsorbent due to its excellent morphology, high stability under a wide range of conditions, recyclability, and high adsorption capacity.  相似文献   

3.
The amounts of adsorption of Cu2+, Ni2+, and Zn2+ from single, binary, and tertiary nitrate solutions onto glutaraldehyde cross-linked chitosan beads were measured. The beads had an average particle size and pore volume of 2 mm and 0.06 cm3/g, respectively, and had a BET surface area of 60 m2/g. All experiments were performed at 298 K as a function of initial pH (2.0–5.0), total metal concentration (0.77–17.0 mol/m3), and molar concentration ratio (0.25–4) in the aqueous phase. It was shown that the amount of metal adsorption generally increased with increasing solution pH. Competitive adsorption was significant in binary and tertiary systems when Cu2+ was present. The selectivity factor reached maximum in an equilibrium pH range of 5.1–5.3 and 4.5–4.9 for the Cu-Ni and Cu-Zn binary systems, respectively. This adsorbent provided a possibility for selective separation of Cu2+ from such multi-component solutions.  相似文献   

4.
A novel glutaraldehyde cross-linked epoxyaminated chitosan (GA-C-ENCS) prepared through chemical modification was used as an adsorbent for the removal and recovery of Cu(II) from aqueous media. The adsorbent was characterized by FTIR, SEM-EDS, ESR, TG/DTG, BET-surface area and potentiometric titration. The Cu(II) adsorption process, which was pH dependent showed maximum removal at pH 6.0. Adsorption equilibrium was achieved within 3 h. The adsorption of Cu(II) followed a reversible-first-order kinetics. The equilibrium data were evaluated using the Langmuir, Freundlich and Dubinin–Radushkevich isotherm models. The best interpretation for the equilibrium data was given by the Dubinin–Radushkevich isotherm. The adsorption capacity of the adsorbent increased from 3.11 to 3.71 mmol g−1 when the temperature was increased from 20 to 50 °C. The complete removal of 20.7 mg L−1 Cu(II) from electroplating industry wastewater was achieved by 0.4 g L−1 GA-C-ENCS. Regeneration experiments were tried for four cycles and the results indicate a capacity loss of <7.0%.  相似文献   

5.
The removal of heavy metal cations by natural zeolites   总被引:4,自引:0,他引:4  
In this study, the adsorption behavior of natural (clinoptilolite) zeolites with respect to Co2+, Cu2+, Zn2+, and Mn2+ has been studied in order to consider its application to purity metal finishing wastewaters. The batch method has been employed, using metal concentrations in solution ranging from 100 to 400 mg/l. The percentage adsorption and distribution coefficients (Kd) were determined for the adsorption system as a function of sorbate concentration. In the ion exchange evaluation part of the study, it is determined that in every concentration range, adsorption ratios of clinoptilolite metal cations match to Langmuir, Freundlich, and Dubinin–Kaganer–Radushkevich (DKR) adsorption isotherm data, adding to that every cation exchange capacity metals has been calculated. It was found that the adsorption phenomena depend on charge density and hydrated ion diameter. According to the equilibrium studies, the selectivity sequence can be given as Co2+ > Cu2+ > Zn2+ > Mn2+. These results show that natural zeolites hold great potential to remove cationic heavy metal species from industrial wastewater.  相似文献   

6.
In this study, graphene oxide (GO)-based two-dimensional molecular brush was fabricated by grafting polyacrylamide onto GO nanosheets for efficient removal of Pb2+ and Cu2+ from water media. Owing to the rich oxygen and nitrogen functional groups in the composites, the synthetic GO two-dimensional molecular brush can get the maximum adsorption capacity of 268.4 mg/g for Pb2+ and 127.2 mg/g for Cu2+, respectively. Moreover, the interspaces between the stacked two-dimensional molecular brushes provide fast pathways for the diffusion of heavy metal ions. As a result, GO-based two-dimensional molecular brush can reach the adsorption equilibrium within 60 min. These results indicated that the synthetic GO-based two-dimensional molecular brush is a promising adsorbent to separate heavy metal ions from water media.  相似文献   

7.
A rapid and efficient method based on molecular docking and isothermal titration calorimetry (ITC) was developed to identify effective adsorbents for the target peptide Ser‐Glu‐Ala‐Asp‐His (SEADH). Preliminary screening of five candidate adsorbents using molecular docking revealed that three suitable structures (A1, A2, and A3) either with or without coordination of Zn2+ should be effective. The three selected structures were then prepared and further screened by evaluating their affinities for the peptide SEADH using ITC. The screening results revealed that the adsorbent A2 coordinated with Zn2+ was the best adsorbent, and subsequent static adsorption experiments confirmed the reliability of the screening method. Further ITC analysis, combined with molecular docking, was performed to provide the possible adsorption mechanism.  相似文献   

8.
Composite of polyacrylamide-bentonite (PAA-B) was prepared by direct polymerisation of PAA in a suspension of bentonite (B). Adsorption and thermodynamic features of phytic acid (Phy) adsorption onto B, PAA and PAA-B, and those of Fe3+, Zn2+, UO2 2+ adsorption onto PAA-B and its modification by Phy (PAA-B-Phy) have been investigated. The reusability, storagability, ion selectivity and recoverability of sorbed ions with 1 M HCl have also been considered.The chemical and physical structure of adsorbents has been characterised by means of FT-IR and XRD. All adsorption isotherms for Phy and the ions were L-type of the Giles classification except, the one which is S type for adsorption of Phy onto PAA. The maximum adsorption capacities for the ions adsorbed were in order of UO2 2+ > Fe3+ > Zn2+ for PAA-B and Zn2+ > Fe3+ > UO2 2+ for PAA-B-Phy. Langmuir equilibrium constants for the adsorption of ions onto PAA-B-Phy were significantly higher than those found for PAA-B; the magnitude of increase for UO2 2+ was about 100. The thermodynamic parameters indicated that adsorption reactions are spontaneous in terms of adsorption free enthalpy.The chemical structure of PAA-B-Phy was not changed at the end of the studies of reusability and storagability. The composite was selective for UO2 2+ of the ions of interest.The composite of PAA-B and its modification by Phy have been used for the first time in this investigation. It is proposed that the composites can be practically used in the investigations and applications of adsorption.  相似文献   

9.
A novel magnetic nanoadsorbent was prepared by the covalent binding of carboxymethyl chitosan (CMC) onto the surface of Fe3O4 magnetic nanoparticles, which was developed using a coprecipitating method. This nanoadsorbent was characterized by transmission electron microscopy (TEM) and X-ray diffraction patterns (XRD), etc. Moreover, the adsorption performance of the nanoadsorbent toward Zn2+ ions was investigated. The results showed that the mean diameter of the magnetic nanoadsorbent was 18 nm and the amount of CMC was about 5%. The nanoadsorbent showed high efficiency for the removal of Zn2+ ions. The adsorption rate was so rapid that the equilibrium was achieved within 2 min. The isotherm adsorption data obeyed the Langmuir model, with a maximum adsorption capacity of 20.4 mg·g?1 and an adsorption equilibrium constant of 0.0314 L·mg?1. The thermodynamic calculations indicated that the adsorption process was exothermic and that the enthalpy change was ?5.68 kJ·mol?1.  相似文献   

10.
In this work, we study the elimination of three bivalent metal ions (Cd2+, Cu2+, and Pb2+) by adsorption onto natural illitic clay (AM) collected from Marrakech region in Morocco. The characterization of the adsorbent was carried out by X-ray fluorescence, Fourier transform infrared spectroscopy and X-ray diffraction. The influence of physicochemical parameters on the clay adsorption capacity for ions Cd2+, Cu2+, and Pb2+, namely the adsorbent dose, the contact time, the initial pH imposed on the aqueous solution, the initial concentration of the metal solution and the temperature, was studied. The adsorption process is evaluated by different kinetic models such as the pseudo-first-order, pseudo-second-order, and Elovich. The adsorption mechanism was determined by the use of adsorption isotherms such as Langmuir, Freundlich, and Temkin models. Experiments have shown that heavy metals adsorption kinetics onto clay follows the same order, the pseudo-second order. The isotherms of adsorption of metal cations by AM clay are satisfactorily described by the Langmuir model and the maximum adsorption capacities obtained from the natural clay, using the Langmuir isotherm model equation, are 5.25, 13.41, and 15.90 mg/g, respectively for Cd(II), Cu(II), and Pb(II) ions. Adsorption of heavy metals on clay is a spontaneous and endothermic process characterized by a disorder of the medium. The values of ΔH are greater than 40 kJ/mol, which means that the interactions between clay and heavy metals are chemical in nature.  相似文献   

11.
Summary Synthetic Sorel's cement [3Mg(OH)2 . MgCl2 . 8H2O], is used as a new adsorbent material for removal of chromium(VI) ion from wastewater effluents. Parameters including contact time, adsorbent dosage and pH are examined and optimized. The equilibrium data are fitted very well to the Langmuir and Freundlich isotherms rather than linear. The adsorption isotherm indicates that the monolayer coverage is 21.4 mg Cr(VI) ion per g of Sorel's cement. The adsorbent is considered as a better replacement technology for removal of Cr(VI) ion from aqueous solutions due to its low cost, good efficiency, fast kinetics, and simple preparation. It offers remarkable efficiency for Cr(VI) removal from wastewater compared with many other natural and synthetic adsorbents.  相似文献   

12.
In order to better understand the adsorption mechanism of chitosan-coated magnetic nanoparticles modified with α-ketoglutaric acid (α-KA-CCMNPs), the removal of Cu2+ by α-KA-CCMNPs from aqueous solution was investigated in a batch system at 18, 35 and 50 °C. Different experimental approaches were applied to show mechanistic aspects, such as adsorption isotherms, kinetics and thermodynamics studies. Adsorption equilibrium studies showed that Cu2+ adsorption followed Langmuir model. The kinetics of the interactions was best described by pseudo-second-order mechanism. The thermodynamic parameters (ΔG°, ΔH° and ΔS°) analysis predicted that the adsorption process was strongly dependent on temperature of medium, and spontaneous and endothermic process. The XPS combined with FT-IR spectra revealed that N atom of –NH– group and O atom of carboxyl group in α-KA-CCMNPs coordinated with Cu2+. Experimental results from this study provide data that would be required if this heavy metal adsorption system was to be “scaled up” for industrial application.  相似文献   

13.
In the present study, adsorption of Ni(II) and Pb(II) from aqueous solution was investigated using activated carbon synthesized with industrial wastewater sludge. The synthesized adsorbent was analyzed using nitrogen adsorption–desorption and Fourier transfer infrared (FTIR) techniques. Batch adsorption mode was used to evaluate the effect of solution pH, contact time, adsorbent dose, initial metal ion concentration, and temperature on the adsorption capacity of the synthesized adsorbent. The kinetic data were analyzed using different kinetic models. The pseudo-second-order equation gave the best fit to the experimental data for both metal ions. The equilibrium isotherm data were analyzed using the Langmuir, Freundlich, and Dubinin–Radushkevich (D–R) isotherm models. The results showed that the data obtained for the Ni(II) and Pb(II) adsorption are in good agreement with the Langmuir model. The Langmuir mono-layer maximum adsorption capacities for Ni(II) and Pb(II) ions were estimated to be 74.06 and 88.76 mg g?1 at 25°C, respectively. In addition, the thermodynamic studies proved that the adsorption process of both metals could be considered endothermic.  相似文献   

14.
This study introduces a merlinoite synthesized from sugarcane bagasse ash (SBA) and kaolin and evaluates its application as an adsorbent to remove lead from wastewater. The synthesis was performed via the hydrothermal method, and optimal conditions were determined. The adsorption of Pb by merlinoite was also optimized. Determination of the Pb2+ remaining in the aqueous solution was determined by atomic absorption spectroscopy (AAS). Adsorption isotherms were mainly studied using the Langmuir and Freundlich models. The Langmuir model showed the highest consistency for Pb adsorption on merlinoite, yielding a high correlation coefficient (R2) of 0.9997 and a maximum adsorption capacity (qmax) of 322.58 mg/g. The kinetics of the adsorption process were best described by a pseudo-second-order model. Thermodynamic studies carried out at different temperatures established that the adsorption reaction was spontaneous and endothermic. The results of this study show that merlinoite synthesized from kaolinite and SBA is an excellent candidate for utilization as a high-performance adsorbent for lead removal from wastewater.  相似文献   

15.
Graphene-like layered hexagonal boron nitride (g-BN) was prepared and characterized. The performance of using g-BN as an adsorbent for removal of fluoroquinolone antibiotic gatifloxacin (GTF) from aqueous solution was evaluated. g-BN showed an excellent adsorption capability with notable GTF adsorption ratio of more than 90%. Data of equilibrium adsorption of GTF onto g-BN at different temperatures were represented by Langmuir, Freundlich and Tempkin isotherm models, and Langmuir exhibited the best fitting with the maximum adsorption capacity of 88.5 mg·g?1 at 288 K. GTF adsorption was insignificantly affected by solution pH. Competitive role of Na+ and Ca2+ in the solution inhibited the adsorption of GTF and decreased the adsorption capacity a bit. The adsorption process was spontaneous and exothermic. The adsorption was probably governed by π–π interaction between GTF and g-BN, and electrostatic interaction may also exist in the adsorption process.  相似文献   

16.
Use of activated carbon (AC) prepared from rice husk and treated with anionic surfactant is investigated to eliminate cationic dye crystal violet (CV) using modelled dye solution. AC modified with anionic surfactant sodium lauryl sulfate (ACSLS) and other two surfactant namely sodium dodecyl sulfonate and hexadecyl trimethyl ammonium bromide were used for the analysis. Optimum ACSLS was analyzed and characterized using BET, XRD, SEM accompanied with XEDS, FTIR, HR-TEM and zeta potential, which confirms the sorption of CV onto ACSLS. Influence of pH, dose of adsorbent, concentration of initial dye, contact time, additive salts as well as actual water samples were investigated. Presence of NH4+, Ca2+, Mg2+, Na2+, Ca2+ and K+ cations in dye solution were having negligible (less than 4 %) influence on dye removal capacity. Study of mass transfer parameters revealed intra particle diffusion and film diffusion both played their part, whereas other kinetic studies has shown that experimental data fitted best with Pseudo 2nd order rate. Isotherm studies accompanied with error analysis revealed that Langmuir isotherm controls the adsorption equilibrium with highest capacity of CV adsorption with optimum operating conditions as pH = 6, temperature = 318 K, adsorbent dose = 100 mg/L and dye concentration = 30–60 mg/L. Study of thermodynamics and temperature analysis have shown that the sorption reaction was favourable and spontaneous with rise in temperature and endothermic in nature. Column studies are reported for varying rate of flow, depth of bed and dye concentrations along with analysis of column experimental data with various models like Yoon-Nelson, Thomas, Bohart-Adam and Clark model. Reusability (no. of cycles) of used adsorbent was studied using regeneration experiments. Analysis inferred that AC modified using surfactants can be a useful technique for enhanced adsorption capacity of dyes from aqueous solution and not much work has been reported on use of anionic surfactant modified AC for dye removal process.  相似文献   

17.
IR spectroscopy was used to study the modification of hydroxyapatite by potassium ferrocyanide and the interaction of transition metal ions with the modified adsorbent. The structural changes of hydroxyapatite upon the adsorption of Zn2+ ions were studied by X-ray phase analysis. Potassium ferrocyanide was found to interact with the surface hydroxyl groups of hydroxyapatite through the nitrogen unshared electron pair. Co2+, Ni2+, and Zn2+ ions were found to eliminate outer-sphere K+ ions of adsorbed ferrocyanide to give Fe2+— CN—M2+— NC—Fe2+ bridging structures. Zn2+ cations additionally eliminate a part of the Ca2+ ions from structural positions of hydroxyapatite, which leads to the appearance of a two-phase hydroxyapatite–sholzite system with heterogeneous distribution of the Ca2+ ions in the mot her mineral phase, while the Zr2+ ions are found in the new sholzite phase.  相似文献   

18.
Simultaneous spectrophotometric methods are described for the determination of Zn2+, Co2+ and Ni2+ by 1-(2-pyridylazo)2-naphthol (PAN) in micellar media, using absorbance correction-H-point standard addition method (HPSAM) and partial least squares (PLS) regression. The ligand and its metal complexes, i.e. Zn2+-PAN, Co2+-PAN and Ni2+-PAN, were made water-soluble by the neutral surfactant Triton X-100, and therefore extraction with organic solvents was no longer required. Formation of all of these complexes was complete within 10min at pH 9.2. The linear range was 0.1–1.5mgL–1 for Zn2+, 0.1–2.0mgL–1 for Co2+ and 0.1–2.0mgL–1 for Ni2+. The relative standard deviation (RSD) for the simultaneous determination of 0.50mgL–1 each of Zn2+, Ni2+ and Co2+ by applying the H-point standard addition method was 2.55%, 2.04% and 3.70%, respectively. The total relative standard error for applying the PLS method to 9 synthetic samples in the linear ranges of these metals was 1.8%. Interference effects of common anions and cations were studied, and both methods were applied to the simultaneous determination of Zn2+, Co2+ and Ni2+ in alloy samples.  相似文献   

19.
《中国化学快报》2021,32(12):3837-3840
A HAT based large PAH discotic molecule PN8 is developed. The enlarged chromophoric core and doping heteroatoms enable colorimetric and fluorometric sensing of Cu2+ and Zn2+ with highly appreciable optical changes, good selectivity and low detection limit. Moreover, PN8 was demonstrated as an excellent adsorbent to remove Cu2+ and Zn2+ from wastewater.  相似文献   

20.
Composite of polyacrylamide-bentonite (PAA-B) was prepared by direct polymerization in a suspension of bentonite (B), the composite was then modified by phytic acid (PAA-B-Phy). The parameters related to adsorption of UO2 2+ in absence and presence of 0.01M CaCl2 and of natural radionuclides (Tl+, Pb2+, Ra2+ and Ac3+ in a leaching solution) onto PAA-B and PAA-B-Phy, and thermodynamics of the adsorption were investigated. Adsorption isotherms were of L and H types for the adsorption of UO2 2+ onto PAA-B and PAA-B-Phy, whilst for Tl+, Pb2+, Ra2+ and Ac3+ they were of C type for both adsorbents. Langmuir equilibrium constants for the adsorption of all studied ions onto PAA-B-Phy were significantly higher than those found for PAA-B. The thermodynamic parameters indicated that adsorption reactions are spontaneous in terms of adsorption free enthalpy. The composite of PAA-B and its modification by Phy have been used for the first time in this study. It is concluded that the composites can be practically used for adsorption and applied as adsorbent of radionuclides.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号