首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Chemistry & biology》1997,4(8):619-630
Background: Hairpin ribozymes (RNA enzymes) catalyze the same chemical reaction as ribonuclease A and yet RNAs do not usually have functional groups analogous to the catalytically essential histidine and lysine sidechains of protein ribonucleases. Some RNA enzymes appear to recruit metal ions to act as Lewis acids in charge stabilization and metal-bound hydroxide for general base catalysis, but it has been reported that the hairpin ribozyme functions in the presence of metal ion chelators. This led us to investigate whether the hairpin ribozyme exploits a metal-ion-independent catalytic strategy.Results: Substitution of sulfur for nonbridging oxygens of the reactive phosphate of the hairpin ribozyme has small, stereospecific and metal-ionindependent effects on cleavage and ligation mediated by this ribozyme. Cobalt hexammine, an exchange-inert metal complex, supports full hairpin ribozyme activity, and the ribozyme's catalytic rate constants display only a shallow dependence on pH.Conclusions: Direct metal ion coordination to phosphate oxygens is not essential for hairpin ribozyme catalysis and metal-bound hydroxide does not serve as the general base in this catalysis. Several models might account for the unusual pH and metal ion independence: hairpin cleavage and ligation might be limited by a slow conformational change; a pH-independent or metalcation-independent chemical step, such as breaking the 5′ oxygen-phosphorus bond, might be rate determining; or finally, functional groups within the ribozyme might participate directly in catalytic chemistry. Whichever the case, the hairpin ribozyme appears to employ a unique strategy for RNA catalysis.  相似文献   

2.
《Chemistry & biology》1997,4(9):675-683
Background: It is generally accepted that, during evolution, replicating RNA molecules emerged from pools of random polynucleotides. This prebiotic RNA world was followed by an era of RNA-mediated catalysis of amide-bond formation. RNA would thus have provided the machinery responsible for the assembly of peptides and the beginning of the protein world of today. Naturally occurring ribozymes, which catalyze the cleavage or ligation of oligonucleotide phosphodiester bonds, support the idea that RNA could self-replicate. But was RNA constrained to this path and were RNA-acylated carriers required before RNA could catalyze the formation of amide bonds?Results: We have isolated RNA catalysts that are capable of mediating amide-bond synthesis without the need for specifically designed templates to align the substrates, and we have kinetically characterized these catalysts. The rate enhancement observed for these RNA amide synthases exceeds the noncatalyzed amidation rate by a factor of ∼104. In addition, Cu2+ ions caused a change in the affinity of RNA for the substrate rather than being directly involved in amide-bond formation.Conclusions: The discovery of these new amide synthases shows how functionally modified nucleic acids can facilitate covalent-bond formation without templating. Previously unforeseen RNA-evolution pathways can, therefore, be considered; for example, to guide amide-bond formation, en route to the protein world, it appears that substrate-binding pockets were formed that are analogous to those of protein enzymes.  相似文献   

3.
《Chemistry & biology》1997,4(8):607-617
Background: The protein enzymes RNA ligase and DNA ligase catalyze the ligation of nucleic acids via an adenosine-5′-5′-pyrophosphate ‘capped’ RNA or DNA intermediate. The activation of nucleic acid substrates by adenosine 5′-monophosphate (AMP) may be a vestige of ‘RNA world’ catalysis. AMP-activated ligation seems ideally suited for catalysis by ribozymes (RNA enzymes), because an RNA motif capable of tightly and specifically binding AMP has previously been isolated.Results: We used in vitro selection and directed evolution to explore the ability of ribozymes to catalyze the template-directed ligation of AMP-activated RNAs. We subjected a pool of 1015 RNA molecules, each consisting of long random sequences flanking a mutagenized adenosine triphosphate (ATP) aptamer, to ten rounds of in vitro selection, including three rounds involving mutagenic polymerase chain reaction. Selection was for the ligation of an oligonucleotide to the 5′-capped active pool RNA species. Many different ligase ribozymes were isolated; these ribozymes had rates of reaction up to 0.4 ligations per hour, corresponding to rate accelerations of ∼ 5 × 105 over the templated, but otherwise uncatalyzed, background reaction rate. Three characterized ribozymes catalyzed the formation of 3′-5′-phosphodiester bonds and were highly specific for activation by AMP at the ligation site.Conclusions: The existence of a new class of ligase ribozymes is consistent with the hypothesis that the unusual mechanism of the biological ligases resulted from a conservation of mechanism during an evolutionary replacement of a primordial ribozyme ligase by a more modern protein enzyme. The newly isolated ligase ribozymes may also provide a starting point for the isolation of ribozymes that catalyze the polymerization of AMP-activated oligonucleotides or mononucleotides, which might have been the prebiotic analogs of nucleoside triphosphates.  相似文献   

4.
《Chemistry & biology》1998,5(10):539-553
Background: One of the most significant questions in understanding the origin of life concerns the order of appearance of DNA, RNA and protein during early biological evolution. If an ‘RNA world’ was a precursor to extant life, RNA must be able not only to catalyze RNA replication but also to direct peptide synthesis. Iterative Iterative RNA selection previously identified catalytic RNAs (ribozymes) that form amide bonds between RNA and an amino acid or between two amino acids.Results: We characterized peptidyl-transferase reactions catalyzed by two different families of ribozymes that use substrates that mimic A site and P site tRNAs. The family II ribozyme secondary structure was modeled using chemical modification, enzymatic digestion and mutational analysis. Two regions resemble the peptidyl-transferase region of 23S ribosomal RNA in sequence and structural context; these regions are important for peptide-bond formation. A shortened form of this ribozyme was engineered to catalyze intermolecular (‘trans’) peptide-bond formation, with the two amino-acid substrates binding through an attached AMP or oligonucleotide moiety.Conclusions: An in vitro-selected ribozyme can catalyze the same type of peptide-bond formation as a ribosome; the ribozyme resembles the ribosome because a very specific RNA structure is required for substrate binding and catalysis, and both amino acids are attached to nucleotides. It is intriguing that, although there are many different possible peptidyl-transferase ribozymes, the sequence and secondary structure of one is strikingly similar to the ‘helical wheel’ portion of 23S rRNA implicated in ribosomal peptidyl-transferase activity.  相似文献   

5.
Catalytic promiscuity, the ability of an enzyme to catalyze alternative reactions, has been suggested to have played an important role in the evolution of new catalytic activities in protein enzymes. Similarly, promiscuous activities may have been advantageous in an earlier RNA world. The Tetrahymena Group I ribozyme naturally catalyzes the site-specific guanosine attack on an anionic phosphate diester and has been shown to also catalyze aminoacyl transfer to water, albeit with a small rate acceleration (<10-fold). This inefficient catalysis could be due to the differences in charge and/or geometry requirements for the two reactions. Herein, we describe a new promiscuous activity of this ribozyme, the site-specific guanosine attack on a neutral phosphonate diester. This alternative substrate lacks the negative charge at the reaction center but, in contrast to the aminoacyl substrate, can undergo nucleophilic attack with the same geometry as the natural substrate. Our results show that the neutral phosphonate reaction is catalyzed about 1 x 106-fold, substantially better than the acyl transfer but far below the normal anionic substrate. We conclude that both charge and geometry are important factors for catalysis of the normal reaction and that promiscuous catalytic activities of ribozymes could have been created or enhanced by reorienting and swapping RNA domains.  相似文献   

6.
The confinement of substrates inside the cavity of self-assembled capsules makes it possible to effectively catalyze organic reactions in a way that is analogous to how enzymes work in biological systems. Due to steric constraints, solvent exclusion, intermediates stabilization, and conformational control of substrates, chemical reactions taking place in a confined space may exhibit unique processes. As a result, the fundamental rules of organic reactivity are frequently broken. The hexameric capsule CR, an intriguing supramolecular assembly formed by six resorcinarene 1 macrocycles and eight water molecules, is the subject of this review. This assembly has proven to be effective at catalyzing several chemical reactions by controlling reactivity and selectivity in its confined space.  相似文献   

7.
《Chemistry & biology》1997,4(8):579-593
Background: RNA and DNA are polymers that lack the diversity of chemical functionalities that make proteins so suited to biological catalysis. All naturally occurring ribozymes (RNA catalysts) that catalyze the formation, transfer and hydrolysis of phosphodiesters require metal-ion cofactors for their catalytic activity. We wished to investigate whether, and to what extent, DNA molecules could catalyze the cleavage (by either hydrolysis or transesterification) of a ribonucleotide phosphodiester in the absence of divalent or higher-valent metal ions or, indeed, any other cofactors.Results: We performed in vitro selection and amplification experiments on a library of random-sequence DNA that incorporated a single ribonucleotide, a suitable site for cleavage. Following 12 cycles of selection and amplification, a ‘first generation’ of DNA enzymes (DNAzymes) cleaved their internal ribonucleotide phosphodiesters at rates ∼ 107-fold faster than the spontaneous rate of cleavage of the dinucleotide ApA in the absence of divalent cations. Re-selection from a partially randomized DNA pool yielded ‘second generation’ DNAzymes that self-cleaved at rates of ∼ 0.01 min−1 (a 108-fold rate enhancement over the cleavage rate of ApA). The properties of these selected catalysts were different in key respects from those of metal-utilizing ribozymes and DNAzymes. The catalyzed cleavage took place in the presence of different chelators and ribonuclease inhibitors. Trace-metal analysis of the reaction buffer (containing very high purity reagents) by inductively coupled plasma-optical emission spectrophotometry indicated that divalent or higher-valent metal ions do not mediate catalysis by the DNAzymes.Conclusions: Our results indicate that, although ribozymes are sometimes regarded generically to be metalloenzymes, the nucleic acid components of ribozymes may play a substantial role in the overall catalysis. Given that metal cofactors increase the rate of catalysis by ribozymes only ∼ 102−103-fold above that of the DNAzyme described in this paper, it is conceivable that substrate positioning, transition-state stabilization or general acid/base catalysis by the nucleic acid components of ribozymes and DNAzymes may contribute significantly to their overall catalytic performance.  相似文献   

8.
The origin of the enormous catalytic power of enzymes has been extensively studied through experimental and computational approaches. Although precise mechanisms are still subject to much debate, enzymes are thought to catalyze reactions by stabilizing transition states (TSs) or destabilizing ground states (GSs). By exploring the catalysis of various types of enzyme–substrate noncovalent interactions, we found that catalysis by TS stabilization and the catalysis by GS destabilization share common features by reducing the free energy barriers (ΔGs) of reactions, but are different in attaining the requirement for ΔG reduction. Irrespective of whether enzymes catalyze reactions by TS stabilization or GS destabilization, they reduce ΔGs by enhancing the charge densities of catalytic atoms that experience a reduction in charge density between GSs and TSs. Notably, in TS stabilization, the charge density of catalytic atoms is enhanced prior to enzyme–substrate binding; whereas in GS destabilization, the charge density of catalytic atoms is enhanced during the enzyme–substrate binding. Results show that TS stabilization and GS destabilization are not contradictory to each other and are consistent in reducing the ΔGs of reactions. The full mechanism of enzyme catalysis includes the mechanism of reducing ΔG and the mechanism of enhancing atomic charge densities. Our findings may help resolve the debate between TS stabilization and GS destabilization and assist our understanding of catalysis and the design of artificial enzymes.

Transition state stabilization and ground state destabilization utilize the same molecular mechanism when lowering the free energy barriers (ΔGs) of reactions, but differ in achieving the requirement for ΔG reduction.  相似文献   

9.
Deoxyribozymes are DNA molecules with catalytic activity. For historical and practical reasons, essentially all reported deoxyribozymes catalyze reactions of nucleic acid substrates, although this is probably not a fundamental limitation. In vitro selection strategies have been used to identify many deoxyribozymes that catalyze RNA cleavage, RNA and DNA ligation, and a variety of covalent modification reactions of nucleic acid substrates. Many deoxyribozymes are capable of catalysis with substantial rate enhancements reaching up to 10(10)-fold over background, and their very high selectivities would often be difficult or impossible to achieve using traditional organic synthesis approaches. This report summarizes the current utility and potential future applications of deoxyribozymes from the bioorganic chemistry perspective.  相似文献   

10.
11.
The excellent catalytic performances of enzymes in terms of activity and selectivity are an inspiration for synthetic chemists and this has resulted in the development of synthetic containers for supramolecular catalysis. In such containers the local environment and pre-organization of catalysts and substrates leads to control of the activity and selectivity of the catalyst. Herein we report a supramolecular strategy to encapsulate single catalysts in a urea-functionalized Fe4L6 cage, which can co-encapsulate a functionalized urea substrate through hydrogen bonding. Distinguished selectivity is obtained, imposed by the cage as site isolation only allows catalysis through π activation of the substrate and as a result the selectivity is independent of catalyst concentration. The encapsulated catalyst is more active than the free analogue, an effect that can be ascribed to transitionstate stabilization rather than substrate pre-organization, as revealed by the MM kinetic data. The simple strategy reported here is expected to be of general use in many reactions, for which the catalyst can be functionalized with a sulfonate group required for encapsulation.  相似文献   

12.
《Chemistry & biology》1997,4(7):513-517
Background: Ribozymes are biological catalysts that promote the hydrolysis and transesterification of phosphate diesters of RNA. They typically require divalent magnesium ions for activation, although it has proven difficult to differentiate structural from catalytic roles for the magnesium ions and to identify the molecular mechanism of catalysis. Direct inner-sphere coordination is usually invoked in the catalytic step, although there is no evidence to support the generality of such a pathway for all ribozymes.Results: We studied the catalytic pathway for the hairpin class of ribozyme. The substitutionally inert transition metal complex cobalt hexaammine [Co(NH3)63+) was shown to be as active as Mg2+(aq) in promoting hairpin ribozyme activity, demonstrating that inner-sphere pathways are not used by this class of ribozyme. These results were confirmed by studies with RP- and SP-phosphorothioate substrate analogs which show a similar reactivity to that of the native substrate towards the magnesium-activated ribozyme. Monovalent cations enhance the activity of Co(NH3)63+-promoted reactions, but inhibit Mg2+-activated catalysis, demonstrating a requirement for hydrated cations at several key sites in the ribozyme.Conclusions: These results provide clear support for a model of RNA catalysis that does not involve direct coordination of magnesium to the phosphate ester, nor activation of a bound water molecule. A mechanism in which catalysis is carried out by functional groups on the RNA ribozyme itself is possible; such functional groups are likely to have pKa values that are appropriate for carrying out this catalysis. The metal cofactor would then serve to define the architecture of the catalytic pocket and contribute to the stabilization of transient species, as has been described earlier. Hydrolytic pathways in nucleic acid reactions are apparently more diverse than was previously thought, and the hairpin ribozyme falls into a mechanistically distinct class from the Tetrahymena and the hammerhead ribozymes.  相似文献   

13.
B(12)-cofactors play important roles in the metabolism of microorganisms, animals and humans. Microorganisms are the only natural sources of B(12)-derivatives, and the latter are "vitamins" for other B(12)-requiring organisms. Some B(12)-dependent enzymes catalyze complex isomerisation reactions, such as methylmalonyl-CoA mutase. They need coenzyme B(12), an organometallic B(12)-derivative, to induce enzymatic radical reactions. Another group of widely relevant enzymes catalyzes the transfer of methyl groups, such as methionine synthase, which uses methylcobalamin as cofactor. This tutorial review covers structure and reactivity of B(12)-derivatives and structural aspects of their interactions with proteins and nucleotides, which are crucial for the efficient catalysis by the important B(12)-dependent enzymes, and for achieving and regulating uptake and transport of B(12)-derivatives.  相似文献   

14.

Background  

The pyridoxal-5'-phosphate (PLP)-dependent or vitamin B6-dependent enzymes that catalyze manifold reactions in the metabolism of amino acids belong to no fewer than four evolutionarily independent protein families. The multiple evolutionary origin and the essential mechanistic role of PLP in these enzymes argue for the cofactor having arrived on the evolutionary scene before the emergence of the respective apoenzymes and having played a dominant role in the molecular evolution of the B6 enzyme families. Here we report on an attempt to re-enact the emergence of a PLP-dependent protoenzyme. The starting protein was pancreatic ribonuclease A (RNase), in which active-site Lys41 or Lys7 readily form a covalent adduct with PLP.  相似文献   

15.
Numerous studies, both in enzymatic and nonenzymatic catalysis, have been undertaken to understand the way by which metal ions, especially zinc ions, promote the hydrolysis of phosphate ester and amide bonds. Hydrolases containing one metal ion in the active site, termed mononuclear metallohydrolases, such as carboxypeptidase. A and thermolysin were among the first enzymes to have their structures unraveled by X-ray crystallography. In recent years an increasing number of metalloenzymes have been identified that use two or more adjacent metal ions in the catalysis of phosphoryl-transfer reactions (R-OPO3 + R′-OH → R′-OPO3 + R-OH; in the case of the phosphatase reaction R′-OH is a water molecule) and carbonyl-transfer reactions, for example, in peptidases or other amidases. These dinuclear metalloenzymes catalyze a great variety of these reactions, including hydrolytic cleavage of phosphomono-, -di- and -triester bonds, phosphoanhydride bonds as well as of peptide bonds or urea. In addition, the formation of the phosphodiester bond of RNA and DNA by polymerases is catalyzed by a two-metal ion mechanism. A remarkable diversity is also seen in the structures of the active sites of these di- and trinuclear metalloenzymes, even for enzymes that catalyze very similar reactions. The determination of the structure of a substrate, product, stable intermediate, or a reaction coordinate analogue compound bound to an active or inactivated enzyme is a powerful approach to investigate mechanistic details of enzyme action. Such studies have been applied to several of the metalloenzymes reviewed in this article; together with many other biochemical studies they provide a growing body of information on how the two (or more) metal ions cooperate to achieve efficient catalysis.  相似文献   

16.
Understanding the origin of the enormous catalytic power of enzymes is very important. Electrostatic interactions and desolvation are the phenomena that are most proposed to explain the catalysis of enzymes; however, they also decelerate enzymatic reactions. How enzymes catalyze reactions through noncovalent interactions is still not well-understood. In this study, we explored how enzyme-substrate noncovalent interactions affect the free energy barriers (ΔG3s) of reactions by using a theoretical derivation approach. We found that enzymes reduce ΔG3s of reactions by decreasing positive charges and/or increasing negative charges in the electron-donating centers and by decreasing negative charges and/or increasing positive charges in the electron-accepting centers of reactions. Enzyme-substrate noncovalent interactions are essential approaches through which the charge alterations lead to ΔG3 reductions. Validations with reported experimental data demonstrated that this charge alteration mechanism can explain the catalyses caused by diverse types of noncovalent interactions. Electrostatic interactions and desolvation are the most observed noncovalent interactions essential for ΔG3 reductions. This mechanism does not contradict any specific enzymatic catalysis and overcomes the shortages of the electrostatic interaction and desolvation mechanisms. This study can provide useful guidance in exploring enzymatic catalysis and designing catalyst.  相似文献   

17.
An endohedrally functionalized self-assembled Fe4L6 cage complex can catalyze oxa-Pictet—Spengler cyclizations of tryptophols and various aldehyde derivatives, showing strong rate accelerations and size-selectivity. Selective molecular recognition of substrates controls the reactivity, and the cage is capable of binding and activating multiple different species along the multistep reaction pathway. The combination of a functionalized active site, size-selective reactivity, and multistep activation, all from a single host molecule, illustrates the biomimetic nature of the catalysis.  相似文献   

18.
《Chemistry & biology》1998,5(11):619-629
Background: Self-assembled conjugated polymers are rapidly finding biological and biotechnological applications. This work describes a synthetic membrane system based on self-assembled polydiacetylenes, which are responsive to the enzymatic activity of phospholipases - a ubiquitous class of enzymes that catalyze the hydrolysis of phospholipid molecules embedded in cell membranes.Results: We show that phospholipases are active at bilayer vesicles composed of the natural enzyme substrate, dimyristoylphosphatidylcholine (DMPC), and a synthetic π-conjugated polymerized lipid based on polydiacetylene (PDA). In addition, the enzymatic reaction induces an optical transition in the surrounding PDA matrix, visible to the naked eye. Nuclear magnetic resonance spectroscopy confirms the occurrence of enzymatic catalysis and reveals the fate of the cleavage products.Conclusions: The results indicate that the structural and color changes of the PDA matrix are directly related to interfacial catalysis by phospholipase. This novel biocatalytic method of inducing optical transitions in conjugated polymers might lead to new approaches towards rapidly screening new enzyme inhibitor compounds.  相似文献   

19.
Nature has perfected the stereospecific aldol reaction by using aldolase enzymes. While virtually all the biochemical aldol reactions use unmodified donor and acceptor carbonyls and take place under catalytic control in an aqueous environment, the chemical domain of the aldol addition has mostly relied on prior transformation of carbonyl substrates, and the whole process traditionally is carried out in anhydrous solvents. The area of aqua-asymmetric aldol reactions has received much attention recently in light of the perception both of its green chemistry advantages and its analogy to eon-perfected enzyme catalysis. Both chiral metal complexes and small chiral organic molecules have been recently reported to catalyze aldol reactions with relatively high chemical and stereochemical efficiency. This tutorial review describes recent developments in this area.  相似文献   

20.
Background:iso-Guanine (iso-G) is the purine component of an isomeric Watson-Crick base pair that may have existed prebiotically. By comparing the abiotic molecular recognition properties of iso-G and its complement, iso-cytosine (iso-C), with those of genomic nucleotide bases, it may be possible to explain the exclusion of the iso-G-iso-C base pair from modern genomes. Whether a nucleobase forms quartets may have a key role in determining its functionality. Biotically, nucleic acid tetraplexes have been implicated in cellular functions; prebiotically, tetraplexes would probably interfere with replication. Recently, in vitro selection has yielded receptors and catalysts that incorporate G quartets. The versatility of these structures could be enhanced by expanding the range of bases that can form the quartet motif.Results: Native polyacrylamide gel electrophoresis of oligonucleotides bearing runs of iso-G provides strong support for tetraplex formation via cation-promoted DNA strand association. In particular, when strands of different lengths bearing the same iso-G tetrad recognition element were combined, five bands were observed after electrophoresis, corresponding to all possible heterotetraplexes with parallel strand alignment. An analogous experiment with a mixture of strands bearing iso-G or G tetrad recognition domains supports the existence of mixed iso-G/G tetraplexes with antiparallel strand alignment at chimeric junctions. iso-G tetraplex and quartet structure has also been probed by a photo-crosslinking experiment, ultra-violet spectroscopy and theoretical calculations.Conclusions: As iso-G and G both have a marked tendency to form tetraplexes, their tandem inclusion in genetic material may be problematic, leading to double-stranded DNA half composed of bases that have a tendency to auto-associate. The resulting density of ‘selfish’ bases could undermine Watson-Crick pair formation, especially in a prebiotic context devoid of enzymes. Nevertheless, the ability of iso-G to form mixed quartets with G may provide a basis for altering the properties of tetraplexes in the domain of artificial receptors or catalysts from in vitro selections.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号