首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The results of first principles electronic structure calculations for the metallic rutile and the insulating monoclinic phase of vanadium dioxide are presented. In addition, the insulating phase is investigated for the first time. The density functional calculations allow for a consistent understanding of all three phases. In the rutile phase metallic conductivity is carried by metal orbitals, which fall into the one‐dimensional band, and the isotropically dispersing bands. Hybridization of both types of bands is weak. In the phase splitting of the band due to metal‐metal dimerization and upshift of the bands due to increased pd overlap lead to an effective separation of both types of bands. Despite incomplete opening of the optical band gap due to the shortcomings of the local density approximation, the metal‐insulator transition can be understood as a Peierls‐like instability of the band in an embedding background of electrons. In the phase, the metal‐insulator transition arises as a combined embedded Peierls‐like and antiferromagnetic instability. The results for VO2 fit into the general scenario of an instability of the rutile‐type transition‐metal dioxides at the beginning of the d series towards dimerization or antiferromagnetic ordering within the characteristic metal chains. This scenario was successfully applied before to MoO2 and NbO2. In the compounds, the and bands can be completely separated, which leads to the observed metal‐insulator transitions.  相似文献   

2.
Measurements of fluctuations of plasma potential and electron temperature in a toroidal magnetized plasma is carried out by applying a cylindrical probe with insulating end plugs oriented parallel to the B‐field in conjunction with another cylindrical probe oriented perpendicularly. Coherency and cross‐phase between and are estimated, and typically have values close to 0.6 and π respectively. Power‐law spectra are found for frequencies well above the poloidal rotation frequency with spectral index typically around 4.0 for and around 2.5 for . The density gradient is above the threshold for flute interchange instability, and the results are consistent with theory and global numerical simulations of this plasma.  相似文献   

3.
We consider $ \mathcal{N} =2 $ supergravity theories that have the same spectrum as the R + R2 supergravity, as predicted from the off‐shell counting of degrees of freedom. These theories describe standard $ \mathcal{N} =2 $ supergravity coupled to one or two long massive vector multiplets. The central charge is not gauged in these models and they have a Minkowski vacuum with $ \mathcal{N} =2 $ unbroken supersymmetry. The gauge symmetry, being non‐compact, is always broken. α‐deformed inflaton potentials are obtained, in the case of a single massive vector multiplet, with α = 1/3 and 2/3. The α = 1 potential (i.e. the Starobinsky potential) is also obtained, but only at the prize of having a single massive vector and a residual unbroken gauge symmetry. The inflaton corresponds to one of the Cartan fields of the non‐compact quaternionic‐Kähler cosets.  相似文献   

4.
We study the interaction between a scalar quantum field $\hat \phi (x)$, and many different boundary configurations constructed from (parallel and orthogonal) thin planar surfaces on which $\hat \phi (x)$ is constrained to vanish, or to satisfy Neumann conditions. For most of these boundaries the Casimir problem has not previously been investigated. We calculate the canonical and improved vacuum stress tensors $ \langle \hat T_{\mu \nu } (x)\rangle\$ and $ \langle \Theta _{\mu \nu (x)} \rangle\$ of $\hat \phi (x)$; for each example. From these we obtain the local Casimir forces on all boundary planes. For massless fields, both vacuum stress tensors yield identical attractive local Casimir forces in all Dirichlet examples considered. This desirable outcome is not a priori obvious, given the quite different features of $ \langle \hat T_{\mu \nu } (x)\rangle\$ and $ \langle \Theta _{\mu \nu (x)} \rangle\$. For Neumann conditions. $ \langle \hat T_{\mu \nu } (x)\rangle\$ and $ \langle \Theta _{\mu \nu (x)} \rangle\$ lead to attractive Casimir stresses which are not always the same. We also consider Dirichlet and Neumann boundaries immersed in a common scalar quantum field, and find that these repel. The extensive catalogue of worked examples presented here belongs to a large class of completely solvable Casimir problems. Casimir forces previously unknown are predicted, among them ones which might be measurable.  相似文献   

5.
The recent Nova laser experimental Hugoniot for deuterium can be justified by a simple model which involves only very general properties of this material and which highlights the role of the molecular dissociation. The region of maximal compression along the principal Hugoniot is characterized by , , , where EB is the binding energy of a molecule, and ρo is the initial density.  相似文献   

6.
The 1 D one-band Hubbard model with different repulsive on-site interactions on even (U+V > 0) and odd (U-V > 0) sites, supplemented by the correlated-hopping term (t* > 0), describing the modification of the electron hopping by the presence of other particles on the sites, is considered as a 1 D model for CuO systems. The ground state phase diagram is studied within the framework of the bosonization technique and renormalization group analysis valid for weak coupling. Depending on the choice of model parameters, the following sequences of phase transitions with increasing bandfilling occur: 1) metal-insulator-metal (for t* ? U/4); 2) metal-insulator-metal-superconductor $ ({\rm for}U/4 < t * \le U/\sqrt 8);3) $metal-superconductor-metal-insulator-metal-superconductor $ ({\rm for}U/\sqrt 8 \le t * < (U + V)/\sqrt 8){\rm and}4) $metal-superconductor $ ({\rm for}(U + V)/\sqrt 8 \le t*) $.  相似文献   

7.
We combine recent applications of the two‐dimensional quantum inverse scattering method to the scattering amplitude problem in four‐dimensional $ \mathcal{N} = 4$ Super Yang‐Mills theory. Integrability allows us to obtain a general, explicit method for the derivation of the Yangian invariants relevant for tree‐level scattering amplitudes in the $ \mathcal{N} = 4$model.  相似文献   

8.
Intersecting branes have been the subject of an elaborate string model building for several years. After a general introduction into string theory, this work introduces in detail the toroidal and $\mathbb{Z}_N$‐orientifolds. The picture involving D9‐branes with B‐fluxes is shortly reviewed, but the main discussion employs the T‐dual picture of intersecting D6‐branes. The derivation of the R‐R and NS‐NS tadpole cancellation conditions in the conformal field theory is shown in great detail. Various aspects of the open and closed chiral and non‐chiral massless spectrum are discussed, involving spacetime anomalies and the generalized Green‐Schwarz mechanism. An introduction into possible gauge breaking mechanisms is given, too. Afterwards, both 𝒩 = 1 supersymmetric and non‐supersymmetric approaches to low energy model building are treated. Firstly, the problem of complex structure instabilities in toroidal ΩR‐orientifolds is approached by a $\mathbb{Z}_3$‐orbifolded model. In particular, a stable non‐supersymmetric standard‐like model with three fermion generations is discussed. This model features the standard model gauge groups at the same time as having a massless hypercharge, but possessing an additional global BL symmetry. The electroweak Higgs mechanism and the Yukawa couplings are not realized in the usual way. It is shown that this model descends naturally from a flipped SU(5) GUT model, where the string scale has to be at least of the order of the GUT scale. Secondly, supersymmetric models on the $\mathbb{Z}_4$‐orbifold are discussed, involving exceptional 3‐cycles and the explicit construction of fractional D‐branes. A three generation Pati‐Salam model is constructed as a particular example, where several brane recombination mechanisms are used, yielding non‐flat and non‐factorizable branes. This model even can be broken down to a MSSM‐like model with a massless hypercharge. Finally, the possibility that unstable closed and open string moduli could have played the role of the inflaton in the evolution of the universe is being explored. In the closed string sector, the important slow‐rolling requirement can only be fulfilled for very specific cases, where some moduli are frozen and a special choice of coordinates is taken. In the open string sector, inflation does not seem to be possible at all.  相似文献   

9.
Ute Bahr 《Annalen der Physik》1977,489(4):267-285
Effective Elastic Properties of Finite Heterogeneous Media - Application to Rayleigh-waves Rayleigh waves in a heterogeneous material (multiphase mixtures, composite materials, polycrystals) are governed by integrodifferential equations derived by the aid of known methods for infinite heterogeneous media. According to this wave equation the velocity depends on the frequency, and the waves are damped. After some simplifications (isotropy, nonrandom elastic constants) the following is obtained: if the fluctuations of the mass density are restricted to the vicinity of the boundary, the frequency dependent part of the velocity behaves like \documentclass{article}\pagestyle{empty}\begin{document}$ \frac{{l^3 \omega ^3}}{{{\mathop c\limits^\circ} _t^3}} $\end{document} and the damping is proportional to \documentclass{article}\pagestyle{empty}\begin{document}$ \frac{{l^4 \omega ^5}}{{{\mathop c\limits^\circ} _t^5}} $\end{document}, whereas \documentclass{article}\pagestyle{empty}\begin{document}$ \frac{{l^2 \omega ^2}}{{{\mathop c\limits^\circ} _t^2}} $\end{document} respectively \documentclass{article}\pagestyle{empty}\begin{document}$ \frac{{l^3 \omega ^4}}{{{\mathop c\limits^\circ} _t^4}} $\end{document} is found if the fluctuations are present in the whole half-space. From this it is seen, what assumptions are necessary to describe the waves by differential equations with frequenc y-dependent mass density.  相似文献   

10.
The gravity theories of Newton and Einstein are giving opposite sentences about the velocity of light in gravitational field. According to the Newtonian theory the velocity v in gravitational field is greater than the velocity c in a field-free space: v > c. According to general relativity theory we have a smaller velocity: v < c. For a spherical symmetric gravitational field Newton's theory gives \documentclass{article}\pagestyle{empty}\begin{document}$ v \approx c\left({1 + \frac{{fM}}{{c^2 r}}} \right) $\end{document} but Einstein's theory of 1911 gives \documentclass{article}\pagestyle{empty}\begin{document}$ v \approx c\left({1 - \frac{{fM}}{{c^2 r}}} \right) $\end{document} and general relativity gives \documentclass{article}\pagestyle{empty}\begin{document}$ v \approx c\left({1 - 2\frac{{fM}}{{rc^2 }}} \right) $\end{document}. Therefore, the radarecho-measurations of Shapiro are the experimentum crucis for Einstein's against Newton's theory.  相似文献   

11.
In this thesis we construct five‐dimensional gauged supergravity actions which describe flop and conifold transitions in M‐theory compactified on Calabi‐Yau threefolds. While the vector multiplet sector is determined exactly, we use the Wolf spaces to model the universal hypermultiplet together with N charged hypermultiplets corresponding to winding states of M2‐branes. After specifying the hypermultiplet sector the actions are uniquely determined by M‐theory. As an application we consider five‐dimensional Kasner cosmologies. Including the dynamics of the winding modes, we find smooth cosmological solutions which undergo flop and conifold transitions. Instead of the usual runaway behavior the scalar fields of these solutions generically stabilize in the transition region where they oscillate around the transition locus. The scalar potential thereby induces short episodes of accelerated expansion in the space‐time.  相似文献   

12.
Desorption- and Reactionkinetics of the Alkaline Earth Elements Calcium and Strontium with Chlorine on a Tungsten Surface — Part II: Kinetics of the Elementary Steps of the Surface Reaction M + Cl ? MCl (M = Ca, Sr) Utilizing pulsed molecular-beam-technique the kinetics of desorption of Strontium, Calcium, and Chlorine as well as that of the molecules SrCl and CaCl, which are formed at the hot tungsten surface, was investigated. Thereby, the following values were obtained for the activation energies of desorption: ? = (3.76 ± 0.05) eV, ? = (3.32 ± 0.07) eV, ? = (4.16 ± 0.05) eV, ? = (4.2 ± 0.3) eV and ? = (3.9 ± 0.3) eV. Combining these results with the steady-state-results from part I [1] the temperature dependency of the rate constants of dissociation and recombination of MCl-molecules at the tungsten surface could be determined. The values obtained for the dissociation energies D of SrCl and CaCl on tungsten are (0.5 ± 0.5) eV and (0.3 ± 0.5) eV, respectively. The molecules are stabilized on the surface by the activation barrier for dissociation D? only, which was found to be (2.8 ± 0.5) eV for SrCl and (2.3 ± 0.5) eV for CaCl.  相似文献   

13.
《X射线光谱测定》2004,33(3):204-211
This paper introduces the possibility of replacing the usual additive corrections for absorption and enhancement by multiplicative factors. The possibility of deriving simple multiplicative factors to correct for inter‐element matrix effects, namely and , to correct for absorption of primary and secondary radiation, respectively, and enhancement ( ), is demonstrated. The use of the new coefficients, , and , derived directly from mass attenuation coefficients, simplifies the understanding of, and allows the stepwise evaluation of, the excitation of theoretical emitted intensities in XRF spectrometry. The approach is especially useful in providing a more consistent definition of theoretical intensity emitted from an infinitely thick sample, as compared with the classical formalism involving the use of mass attenuation coefficients. The approach has proved particularly useful in the classroom. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

14.
Starting from a recent paper [13] we derive a new representation of the left-hand cut contribution for the πN system. This representation makes it possible to calculate the generalized πN potential accurately from phase shifts and high energy models, because it contains only the imaginary parts of the partial wave amplitudes in the physical region. The analytic properties, the region of convergence and the physical content of this representation is discussed. We propose to use this left-hand cut contribution in bootstrap calculations, because it is more reliable than the approximate expressions which have been used in previous papers. – The left-hand cut contributions are calculated and compared with the nucleon and Δ (1236) approximation for the ƒ, ƒ, ƒ and ƒ partial wave amplitudes.  相似文献   

15.
Desorption- and Reactionkinetics of the Alkaline Earth Elements Calcium and Strontium with Chlorine on a Tungsten Surface — Part I: Chemical Equilibrium of the Surface Reaction M + Cl ? MCl in the Steady State (M = Ca, Br) Utilizing positive and negative surface ionization the reaction M + Cl = MCl (M = Ca, Sr) was studied at a hot tungsten surface under steady state conditions. Comparing the results obtained either by simultaneous M- and Cl2 -exposures or by MCl2 -exposure the existence of chemical equilibrium could be confirmed for the reaction in the temperature interval 1600 K.2000 K; at higher temperatures this equilibrium can be disturbed considerably by the desorption of the reacting components. From the experimental results we obtained under conditions of chemical equilibrium the energy of dissociation of MCl-molecules in the gasphase (D = (3.9 ± 0.15) eV, D = (4.2 ± 0.15)eV) and in the case of a strong disturbance of the equilibrium the difference between the activation energies of desorption and of dissociation of MCl-molecules on the surface (? - D? = (1.6 ± 0.2) eV, ? - D? = (1.4 ± 0.2) eV).  相似文献   

16.
We construct quantized free superfields and represent them as operator‐valued distributions in Fock space starting with the Majorana field. We then analyse the algebras generated by free component quantum fields together with the Susy generators Q, . This enables us to obtain the quantized chiral superfield by finite Susy transformation from its scalar component. To get hermitian superfields we study by the same method a second scalar field algebra from which various scalar superfields can be obtained by exponentiation. Next we investigate the vector algebra and use it to construct the massive vector superfield. Surprisingly enough, the result is totally different from the vector multiplet in the literature. It contains two hermitian four‐vector components instead of one and a spin‐3/2 field similar to the gravitino in supergravity.  相似文献   

17.
It is shown that each non-flat regular static asymptotically flat solution of the gravitational field equation following from the Lagrangian has in a certain sense positive energy. Further, for a set of parameters including the BACH -EINSTEIN theory some results concerning the full nonlinear behaviour of the solutions of the field equation will be given.  相似文献   

18.
The matrix elements for the hyperfine structure of the configuration lll in SL-Kopplung are expressed as linear combinations of the electron coupling constants αli(10), αli(01), αli(12).  相似文献   

19.
20.
In our papers, TREDER [1, 2] we have formulated a unified electrodynamics of the fourth order with bi-wave equations for the vector potential A. In this electrodynamics EINSTEIN ian photon and heavy W-mesons are the field quanta. In correspondence to this field theory we are able to formulate a unified theory of gravitation, too. The field equations for the gravitational metrics grr in this theory are corresponding with the EINSTEIN equations of General Relativity in the same way like the electromagnetic bi-wave equations are corresponding with the MAXWELL equations. The metric gμν is a linear functional of an EINSTEIN ian long-range potential gμν and of a subatomic short-range potential definierte Materie-Tensor die gemeinsame Quelle für alle drei Felder ist. Dann ist g1μν, g2μν und gμν und es gelten die Funktional-Bedingungen wobei hier g2μν Feldgleichungen vom “kosmologischen Typ” befriedigt. By these conditions, the short-range interaction becomes a repulsive force and the action of the NEWTON -EINSTEIN ian attraction and of the subatomic repulsion makes the matter point-like (as in the E.-I.-H.-method) but self-consistent. The gravitational metrics g2μν become regulary. P. e., in the EINSTEIN approximation the field of a point-like mass M is given by a SCHWARZSCHILD  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号