首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The feasibility of obtaining resistant starch type III (RS3) from malanga flour (Xanthosoma sagittifolium), as an unconventional source of starch, was evaluated using the hydrothermal treatment of autoclaving. The physicochemical characterization of RS3 made from malanga flour was carried out through the evaluation of the chemical composition, color attributes, and thermal properties. In addition, the contents of the total starch, available starch, resistant starch, and retrograded resistant starch were determined by in vitro enzymatic tests. A commercial corn starch sample was used to produce RS3 and utilized to compare all of the analyses. The results showed that native malanga flour behaved differently in most of the evaluations performed, compared to the commercial corn starch. These results could be explained by the presence of minor components that could interfere with the physicochemical and functional properties of the flour; however, the RS3 samples obtained from malanga flour and corn starch were similar in their thermal and morphological features, which may be related to their similarities in the content and molecular weight of amylose, in both of the samples. Furthermore, the yields for obtaining the autoclaved powders from corn starch and malanga flour were similar (≈89%), which showed that the malanga flour is an attractive raw material for obtaining RS3 with adequate yields, to be considered in the subsequent research.  相似文献   

2.
The effect of heat treatment below the gelatinization temperature on the susceptibility of corn, mung bean, sago, and potato starches towards granular starch hydrolysis (35°C) was investigated. Starches were hydrolyzed in granular state and after heat treatment (50°C for 30 min) by using granular starch hydrolyzing enzyme for 24 h. Hydrolyzed heat-treated starches showed a significant increase in the percentage of dextrose equivalent compared to native starches, respectively, with corn 53% to 56%, mung bean 36% to 47%, sago 15% to 26%, and potato 12% to 15%. Scanning electron microscopy micrographs showed the presence of more porous granules and surface erosion in heat-treated starch compared to native starch. X-ray analysis showed no changes but with sharper peaks for all the starches, suggested that hydrolysis occurred on the amorphous region. The amylose content and swelling power of heat-treated starches was markedly altered after hydrolysis. Evidently, this enzyme was able to hydrolyze granular starches and heat treatment before hydrolysis significantly increased the degree of hydrolysis.  相似文献   

3.
Differential scanning calorimetry (DSC), acidic hydrolysis and different physico-chemical approaches were used to study thermodynamic and structural characteristics of starches from near-isogenic wheat lines to establish the effect of different combinations of active granule-bound starch synthase isoforms, taking part in amylose biosynthesis, on the structure and thermodynamic properties of starches. Obtained results suggest that the effect of different GBSS I combinations is realized through altered amylose localization within starch granules, reflecting in changes of melting temperature of crystalline lamellae (T m) and rates of acidic hydrolysis. It has also been demonstrated that changes in T m values for native wheat starches are determined by amylose content in amylopectin clusters.  相似文献   

4.
Samples of starch-g-polyacrylonitrile were prepared using the Ce4+ion as initiator. We discuss the influence of the origin of the starch on the polyacrylonitrile content of the copolymer, on the frequency of the grafted chains, and on the molecular weight of the graft. Relations between alkaline hydrolysis conditions and liquid absorption were also studied. The retention increases with the molecular weight of the grafted polyacrylonitrile, and this factor depends on the origin of the starch. Higher absorptions were obtained with low amylose content samples. An absorption maximum was observed that depends on the time of hydrolysis and consequently on the carboxylate group content.  相似文献   

5.
Starch components, amylose and amylopectin, were analyzed by high-performance size-exclusion chromatography. These two-components were separated using a two-column system (E-Linear and E-1000) and dimethyl sulphoxide as the mobile phase. The void volume (V0 = 2.22 ml) was measured using tobacco mosaic virus. Column calibration was accomplished with dextrans of known average molecular weight (Mw range = 10,100-2,000,000). The elution volume of amylopectin (Ve = 2.5 ml) indicated that this starch component was fractionated on the column system despite its very large molecular size. Standard curves were prepared from various mixtures of purified corn and wheat amylose and amylopectin. From the linear relationships obtained, the percentages of both components in corn and wheat starches were determined. The method developed proved useful to monitor the purity of amylose and amylopectin preparations, and to estimate rapidly the amylose:amylopectin ratio of starch samples.  相似文献   

6.
Differential scanning calorimetry was applied in studies of the effect of gamma irradiation on the potato starch and wheat flour. Essential differences were noticed between endothermal effects observed in concentrated suspensions of the initial and irradiated potato starch and wheat flour heated at a rate of 2.5°C min-1, while only small differences were noticed between gelatinization thermal effects recorded for ca. 20% suspensions of the initial and irradiated potato starch samples heated at a rate 10°C min-1. Moreover, in the case of wheat flour, a decrease of decomposition temperature of the amylose-lipid complex was concluded. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

7.
The effects of added unmodified amylopectin starch, modified amylopectin starch and amylose starch on the formation and properties of emulsions (4 wt.% corn oil) made with an extensively hydrolysed commercial whey protein (WPH) product under a range of conditions were examined. The rate of coalescence was calculated based on the changes in the droplet size of the emulsions during storage at 20 degrees C. The rates of creaming and coalescence in emulsions containing amylopectin starches were enhanced with increasing concentration of the starches during storage for up to 7 days. At a given starch concentration, the rate of coalescence was higher in the emulsions containing modified amylopectin starch than in those containing unmodified amylopectin starch, whereas it was lowest in the emulsions containing amylose starch. All emulsions containing unmodified and modified amylopectin starches showed flocculation of oil droplets by a depletion mechanism. However, flocculation was not observed in the emulsions containing amylose starch. The extent of flocculation was considered to correlate with the rate of coalescence of oil droplets. The different rates of coalescence could be explained on the basis of the strength of the depletion potential, which was dependent on the molecular weight and the radius of gyration of the starches. At high levels of starch addition (>1.5%), the rate of coalescence decreased gradually, apparently because of the high viscosity of the aqueous phase caused by the starch.  相似文献   

8.
马铃薯淀粉磷酸酯的物理化学特性   总被引:3,自引:0,他引:3  
通过与玉米淀粉和马铃薯淀粉相比较,研究了马铃薯淀粉磷酸酯(PEPS)的理化特性,包括粘度的测定,热糊与冷糊的稳定性,不同pH值及电解质(NaCl)和非电解质(蔗糖)存在下的粘度曲线,凝胶强度及冻融稳定性,结果表明,马铃薯淀粉磷酸酯比玉米淀粉和马铃薯淀粉具有更优良的热糊与冷糊的稳定性,电解质(NaCl)和非电解质(蔗糖)的存在,对其热糊与冷糊的稳定性基本元影响,凝胶强度高,冻融稳定性好,尤其是耐酸性能强。  相似文献   

9.
The structure formation of starch polysaccharides in aqueous solutions is determined by the ratio of amylose to amylopectin and the molecular properties of these components. Our research is focused on establishing defined correlations between composition, molecular structure in diluted solutions and rheological properties of concentrated aqueous starch polysaccharide solutions. Diluted solutions were investigated by size exclusion chromatography with multi angle laser light scattering detector. Measurements of concentrated aqueous solutions were carried out by a Bohlin cs-rheometer with programmed stress using a cone-plate geometry of 40 mm diameter and a cone angle of 4 degrees. Gels were characterized by oscillatory measurements taking into account the frequency dependence of the storage and loss moduli and the influence of a stress sweep on the moduli. The concentration dependence was investigated with starches of potato, wheat, maize and wrinkled pea. Starches with quite similar amylose content as from potato, wheat and maize, show different behavior in rheological properties. Further differences in structure formation were obtained by enzymatic hydrolysis of potato and wheat starch with bacterial α-amylase. The hydrolyzing conditions were chosen such that the degradation led to molecular weights between 5*105 and 107 g/mol. Detailed information about molecular composition was obtained by fractionation of degraded starches. The amylopectin was found to be degraded more strongly than the contained amylose. In comparison to native starch polysaccharide fractions the amylopectin hinders the gelation process in dependence on its molecular weight distribution and the length of the outer chains.  相似文献   

10.
Tapioca and potato starches were used to investigate the effect of heat–moisture treatment (HMT; 95–96 °C, 0–60 min, 1–6 iterations) on gelatinization properties, swelling power (SP), solubility and pasting properties. Tapioca starch had similar content and degree of polymerization of amylose, but a higher amylopectin short/long chain ratio, to potato starch. After HMT, the gelatinization temperature range was narrowed for tapioca starch, but was widened for potato starch. Decreases in SP and solubility were less for tapioca than potato starches, coinciding with a progressive shift to the moderate-swelling pasting profile for tapioca but a drastic change to the restricted-swelling profile for potato. Moreover, decreasing extents of SP and maximum viscosity for HMT tapioca starch were, respectively, in the range of 47–63% and 0–36%, and those of HMT potato starch were 89–92% and 63–94%. These findings indicate that the granule expansion and viscosity change of starch during gelatinization can be tailored stepwise by altering the HMT holding time and iteration.  相似文献   

11.
Summary: The purpose of this study was to improve the melting flow of starch/glycerol(GA) blends by modified starches. A variety of modified starches, which was treated by hydrolysis and acid hydrolysis, with and without ultrasonic treatment were used. The MFI (melt flow index) of blends increased from 0.5g/10min to 300g/10min when the addition of acid hydrolysis starch (0.3M CA-starch) was 70wt%. Their crystalline behaviors were analyzed by XRD results. The ultrasonic treatment has been proved to have the effect of hydrolysis without acids and synergistic effect on recrystalline. The SEM micrographs of the blend with the ultrasonic treatment starch gave the cleaving surface with comparison to the other blends. The weight loss of the blends with acid hydrolysis starches reached to 60∼80% after one week biodegradation as the ultrasonic treatment was used.  相似文献   

12.
In the present study, isothermal microcalorimetry was introduced as a tool to investigate properties of starch retrogradation during the first 24 h. The study was made on purified amylose and amylopectin from corn, as well as on native starches, such as wheat, potato, maize, waxy maize and amylomaize, differing in their amylose content. The results were obtained in the form ofP-t traces (thermal powervs. time), and integration of these traces gave a net exothermic enthalpy of reaction, caused by the crystallization of amylose and amylopectin. TheP-t traces reflected the quantities of amylose and amylopectin in the starch studied. Depending on the amylose content and the botanical source of the starch, the rate of crystallization of amylose was high and predominated over that of amylopectin during the first 5–10 h. The contribution from amylose crystallization to the measured exothermic enthalpy was very substantial during this period. After 10 h, amylose crystallized at a lower constant rate. During the first 24 h, amylopectin crystallized at a low steady rate. The exothermic enthalpies obtained by the isothermal microcalorimetric investigations during the first 24 h of retrogradation were generally low in relation to the endothermic melting enthalpies observed by differential scanning calorimetry (DSC) measurements after 24 h of storage. The discrepancies in enthalpy values between the two methods are discussed in relation to phase separation and the endothermic effects owing to the decrease in polymer-water interactions when polymer-rich regions in the starch gel separate. Besides the exothermic enthalpies obtained, theP-t traces also made it possible to study the initial gelation properties of amylose from different botanical sources. The present study further demonstrated that isothermal microcalorimetry can provide a possible way to investigate the antistaling effect of certain polar lipids, such as sodium dodecylsulphate (SDS) and 1-monolauroyl-rac-glycerol (GML), when added to starches of different botanical origin. The net exothermic heat of reaction for starch retrogradation during the first 24 h was decreased when GML or SDS was added to the starch gels. The recordedP-t traces also showed how the effect of the added lipid influenced different periods during the first 24 h of starch retrogradation, and that the effect depended mainly on the amylose content, the botanical source of the starch, and the type of lipid used. When GML or SDS was added to waxy maize, the isothermal microcalorimetric studies clearly indicated some interaction between amylopectin and the polar lipids. These results concerning the action of anti-staling agents are further discussed in relation to the helical inclusion complexes formed between amylose-polar lipid and amylopectin-polar lipid.The authors thank Eva Qvarnström at the Dept. of Thermochemistry and Eva Tjerneld at the Dept. of Food Technology for valuable practical assistance. Financial support was obtained from the Swedish Council for Forestry and Agricultural Research (SJFR) and the Swedish Farmer's Foundation for Agricultural Research (Stiftelsen Lantbruksforskning).  相似文献   

13.
Single-use packaging materials made of expanded polystyrene (EPS) have been identified as suitable items to be replaced by biodegradable materials. Plates made with EPS represent a source of non-degradable waste that is difficult to collect and to recycle. Potato starch based foamed plates have been prepared by a baking process. Presently, foam plates have been prepared by baking aqueous mixtures of potato starch, corn fibers, and poly(vinyl alcohol) (PVA) inside a hot mold. The effects of the addition of corn fibers, a co-product of bio-ethanol production, on mechanical properties and moisture resistance of potato starch based foamed plates were investigated. The addition of corn fiber to potato starch batter increased baking time and an increased batter volume is needed to form a complete tray. The mechanical properties of the trays decreased with added corn fiber. In previous studies PVA has been added as aqueous solution to improve strength, flexibility, and water resistance of baked starch trays. In this study, 88% hydrolyzed PVA was added as a powder in the mixture, avoiding the time consuming and costly step of pre-dissolving the PVA. The addition of PVA to potato starch batters containing corn fiber mitigated the reduction in tensile properties seen in trays with added corn fiber. Starch-based trays produced with a high fiber ratio and PVA, showed improved water resistance.  相似文献   

14.
The amylose/amylopectin ratio in cereal substrates is one of the parameters affecting starch hydrolysis and fermentation process. Waxy (less than 1 mass % of amylose) starch seems to be suitable for improving the fuel ethanol production. The main aim of this paper was to characterize the fermentation performance of corn and wheat waxy and non-waxy cultivars in terms of simultaneous saccharification and fermentation (SSF) as well as of the separated hydrolysis and fermentation (SHF) type. Two corn (waxy and non-waxy) and two wheat (waxy and non-waxy) cultivars were used for the comparison applying separate enzymatic hydrolysis and fermentation. In the SHF process, the glucose content was higher after saccharification in the waxy corn and wheat compared to that in non-waxy corn and wheat. In the SSF of waxy varieties, the glucose content after the pre-saccharification was also higher than in the non-waxy ones. Although the starch content did not vary significantly, differences in the glucose content after saccharification were observed. The ethanol yield obtained after the distillation of mash varied from 229.2–262.3 L per ton for the SHF fermentation, while it was in the range of 311.5–347.9 L per ton for the SSF process.  相似文献   

15.

Starch is one of the main carbohydrates in food; it is formed by two polysaccharides: amylose and amylopectin. The granule size of starch varies with different botanical origins and ranges from less than 1 μm to more than 100 μm. Some physicochemical and functional properties vary with the size of the granule, which makes it of great interest to find an efficient and accurate size-based separation method. In this study, the full-feed depletion mode of split-flow thin cell fractionation (FFD-SF) was employed for a size-based fractionation of two types of starch granules (corn and potato) on a large scale. The fractionation efficiency (FE) of fraction-a for corn and potato granules was 98.4 and 99.4%, respectively. The FFD-SF fractions were analyzed using optical microscopy (OM) and gravitational field-flow fractionation (GrFFF). The respective size distribution results were in close agreement for the corn starch fractions, while they were slightly different for the potato starch fractions. The thermal properties of FFD-SF fractions were analyzed, and the results for the potato starch showed that the peak temperature of gelatinization (Tp) slightly decreases as the size of the granules increases. Additionally, the enthalpy of gelatinization (ΔH) increases when the granule size increases and shows negative correlation with the gelatinization range (ΔT).

  相似文献   

16.
Starch is the most abundant carbohydrate in legumes (22–45 g/100 g), with distinctive properties such as high amylose and resistant starch content, longer branch chains of amylopectin, and a C-type pattern arrangement in the granules. The present study concentrated on the investigation of hydrolyzed faba bean starch using acid, assisted by microwave energy, to obtain a possible food-grade coating material. For evaluation, the physicochemical, morphological, pasting, and structural properties were analyzed. Hydrolyzed starches developed by microwave energy in an acid medium had low viscosity, high solubility indexes, diverse amylose contents, resistant starch, and desirable thermal and structural properties to be used as a coating material. The severe conditions (moisture, 40%; pure hydrochloric acid, 4 mL/100 mL; time, 60 s; and power level, 6) of microwave-treated starches resulted in low viscosity values, high amylose content and high solubility, as well as high absorption indexes, and reducing sugars. These hydrolyzed starches have the potential to produce matrices with thermo-protectants to formulate prebiotic/probiotic (symbiotic) combinations and amylose-based inclusion complexes for functional compound delivery. This emergent technology, a dry hydrolysis route, uses much less energy consumption in a shorter reaction time and without effluents to the environment compared to conventional hydrolysis.  相似文献   

17.
Starch consists of amylose and amylopectin. Properties such as being natural and highly hygroscopic as well as biodegradability have opened a considerable range of applications for amylose, amylopectin and starch. The performance of particles is highly dependent on their size which in turn determines the specific surface area. This work studies the application of electrospraying to fabricate maize starch and its constituents: amylose and amylopectin nanoparticles. This study showed that electrospraying technique is capable of producing amylose, amylopectin and starch nanopowder with an average particle size around 100 nm. FTIR analysis showed no reaction or interaction occurring in amylose, amylopectin and starch nanoparticle compared with their natural form. Basically, lower concentration, lower viscosity and lower surface tension of the electrospraying solution as well as higher nozzle–collector distance, higher voltage and lower feed rate lead to smaller nanoparticle size. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

18.
Three sweet potato varieties with purple-, yellow-, and white-fleshed root tubers were planted in four growing locations. Starches were isolated from their root tubers, their physicochemical properties (size, iodine absorption, amylose content, crystalline structure, ordered degree, lamellar thickness, swelling power, water solubility, and pasting, thermal and digestion properties) were determined to investigate the effects of variety and growing location on starch properties in sweet potato. The results showed that granule size (D[4,3]) ranged from 12.1 to 18.2 μm, the iodine absorption parameters varied from 0.260 to 0.361 for OD620, from 0.243 to 0.326 for OD680 and from 1.128 to 1.252 for OD620/550, and amylose content varied from 16.4% to 21.2% among starches from three varieties and four growing locations. Starches exhibited C-type X-ray diffraction patterns, and had ordered degrees from 0.634 to 0.726 and lamellar thicknesses from 9.72 to 10.21 nm. Starches had significantly different swelling powers, water solubilities, pasting viscosities, and thermal properties. Native starches had rapidly digestible starch (RDS) from 2.2% to 10.9% and resistant starch (RS) from 58.2% to 89.1%, and gelatinized starches had RDS from 70.5% to 81.4% and RS from 10.8% to 23.3%. Two-way ANOVA analysis showed that starch physicochemical properties were affected significantly by variety, growing location, and their interaction in sweet potato.  相似文献   

19.
The three-dimensional structures of 5 procyanidin dimers have been determined in a hydro-alcoholic medium and in water using 2D NMR and molecular mechanics. They are made from monomers of catechin (CAT) and epicatechin (EPI)-B1: EPI-CAT, B2: EPI-EPI, B3: CAT-CAT, B4: CAT-EPI and B2g: EPI-EPI-3-O-gallate. These tannins exist in two conformations that are in slow exchange in the NMR timescale (s), one is compact and the other extended. The compact form is found to dominate (76-98%) when the dimer is made of at least one CAT monomer (B1, B3, B4). Both forms are found in even proportions only in the case of procyanidin B2. The latter tannin can be converted into a dominant compact form when the lower EPI unit is galloylated. The finding of a predominant compact form for procyanidin dimers is discussed in relation with tannin-saliva protein interactions that are of importance for the wine-tasting/making processes.  相似文献   

20.
Storage conditions seem to be important in the long-term stability of nanoparticles (NPs). This work studies the effects of surfactants and storage container on particle size distribution and zeta potential during long-term storage of acid hydrolyzed potato starch NPs. The NPs were prepared from potato starch using acid hydrolysis and high-intensity ultrasonication. During the ultrasonic treatment, the surfactants were added dropwise to the solutions to reduce the size and stabilize the formed NPs. Particle size distribution, zeta potential, and FE-SEM were used to characterize the ensuing NPs. Additionally, a 5-month stability study was performed to evaluate the maintenance of potato starch NPs over time at different storage conditions. Then, NPs from corn starch were produced by the same procedure and were used for preparing pH-responsive nanocarriers containing NaHCO3 for delivery of an anti-cancer drug, FTY720. These NPs were able to release the drug at pH 5.0 because of CO2 generated from NaHCO3 in acidic pH and released from the NPs by the production of pores, which accelerate drug release.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号