首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This article studies the solubility, Hansen solubility parameters (HSPs), and thermodynamic behavior of a naturally-derived bioactive thymoquinone (TQ) in different binary combinations of isopropanol (IPA) and water (H2O). The mole fraction solubilities (x3) of TQ in various (IPA + H2O) compositions are measured at 298.2–318.2 K and 0.1 MPa. The HSPs of TQ, neat IPA, neat H2O, and binary (IPA + H2O) compositions free of TQ are also determined. The x3 data of TQ are regressed by van’t Hoff, Apelblat, Yalkowsky–Roseman, Buchowski–Ksiazczak λh, Jouyban–Acree, and Jouyban–Acree–van’t Hoff models. The maximum and minimum x3 values of TQ are recorded in neat IPA (7.63 × 10−2 at 318.2 K) and neat H2O (8.25 × 10−5 at 298.2 K), respectively. The solubility of TQ is recorded as increasing with the rise in temperature and IPA mass fraction in all (IPA + H2O) mixtures, including pure IPA and pure H2O. The HSP of TQ is similar to that of pure IPA, suggesting the great potential of IPA in TQ solubilization. The maximum molecular solute-solvent interactions are found in TQ-IPA compared to TQ-H2O. A thermodynamic study indicates an endothermic and entropy-driven dissolution of TQ in all (IPA + H2O) mixtures, including pure IPA and pure H2O.  相似文献   

2.
By dealing CrCl3∙3THF with the corresponding ligands (L1–L5), an array of fluoro-substituted chromium (III) chlorides (Cr1–Cr5) bearing 2-[1-(2,4-dibenzhydryl-6-fluoro- phenylimino)ethyl]-6-[1-(arylimino)ethyl]pyridine (aryl = 2,6-Me2Ph Cr1, 2,6-Et2Ph Cr2, 2,6-iPr2Ph Cr3, 2,4,6-Me3Ph Cr4, 2,6-Et2-4-MePh Cr5) was synthesized in good yield and validated via Fourier Transform Infrared (FT-IR) spectroscopy and elemental analysis. Besides the routine characterizations, the single-crystal X-ray diffraction study revealed the solid-state structures of complexes Cr2 and Cr4 as the distorted-octahedral geometry around the chromium center. Activated by either methylaluminoxane (MAO) or modified methylaluminoxane (MMAO), all the chromium catalysts exhibited high activities toward ethylene polymerization with the MMAO-promoted polymerizations far more productive than with MAO (20.14 × 106 g (PE) mol−1 (Cr) h−1 vs. 10.03 × 106 g (PE) mol−1 (Cr) h−1). In both cases, the resultant polyethylenes were found as highly linear polyethylene waxes with low molecular weights around 1–2 kg mol−1 and narrow molecular weight distribution (MWD range: 1.68–2.25). In general, both the catalytic performance of the ortho-fluorinated chromium complexes and polymer properties have been the subject of a detailed investigation and proved to be highly dependent on the polymerization reaction parameters (including cocatalyst type and amount, reaction temperature, ethylene pressure and run time).  相似文献   

3.
A mixed-valent trinuclear complex with 1,3-bis(5-chlorosalicylideneamino)-2-propanol (H3clsalpr) was synthesized, and the crystal structure was determined by the single-crystal X-ray diffraction method at 90 K. The molecule is a trinuclear CoIII-CoII-CoIII complex with octahedral geometries, having a tetradentate chelate of the Schiff-base ligand, bridging acetate, monodentate acetate coordination to each terminal Co3+ ion and four bridging phenoxido-oxygen of two Schiff-base ligands, and two bridging acetate-oxygen atoms for the central Co2+ ion. The electronic spectral feature is consistent with the mixed valent CoIII-CoII-CoIII. Variable-temperature magnetic susceptibility data could be analyzed by consideration of the axial distortion of the central Co2+ ion with the parameters Δ = –254 cm−1, λ = –58 cm−1, κ = 0.93, tip = 0.00436 cm3 mol−1, θ = –0.469 K, gz = 6.90, and gx = 2.64, in accordance with a large anisotropy. The cyclic voltammogram showed an irreversible reduction wave at approximately −1.2 V·vs. Fc/Fc+, assignable to the reduction of the terminal Co3+ ions.  相似文献   

4.
Four new compounds of formulas [Cu(hfac)2(L)] (1), [Ni(hfac)2(L)] (2), [{Cu(hfac)2}2(µ-L)]·2CH3OH (3) and [{Ni(hfac)2}2(µ-L)]·2CH3CN (4) [Hhfac = hexafluoroacetylacetone and L = 3,6-bis(picolylamino)-1,2,4,5-tetrazine] have been prepared and their structures determined by X-ray diffraction on single crystals. Compounds 1 and 2 are isostructural mononuclear complexes where the metal ions [copper(II) (1) and nickel(II) (2)] are six-coordinated in distorted octahedral MN2O4 surroundings which are built by two bidentate hfac ligands plus another bidentate L molecule. This last ligand coordinates to the metal ions through the nitrogen atoms of the picolylamine fragment. Compounds 3 and 4 are centrosymmetric homodinuclear compounds where two bidentate hfac units are the bidentate capping ligands at each metal center and a bis-bidentate L molecule acts as a bridge. The values of the intramolecular metal···metal separation are 7.97 (3) and 7.82 Å (4). Static (dc) magnetic susceptibility measurements were carried out for polycrystalline samples 1–4 in the temperature range 1.9–300 K. Curie law behaviors were observed for 1 and 2, the downturn of χMT in the low temperature region for 2 being due to the zero-field splitting of the nickel(II) ion. Very weak [J = −0.247(2) cm−1] and relatively weak intramolecular antiferromagnetic interactions [J = −4.86(2) cm−1] occurred in 3 and 4, respectively (the spin Hamiltonian being defined as H = −JS1·S2). Simple symmetry considerations about the overlap between the magnetic orbitals across the extended bis-bidentate L bridge in 3 and 4 account for their magnetic properties.  相似文献   

5.
An aniline-functionalized naphthalene dialdehyde Schiff base fluorescent probe L with aggregation-induced enhanced emission (AIEE) characteristics was synthesized via a simple one-step condensation reaction and exhibited excellent sensitivity and selectivity towards copper(II) ions in aqueous media with a fluorescence “ turn-off ” phenomenon. The detection limit of the probe is 1.64 × 10−8 mol·L−1. Furthermore, according to the results of the UV-vis/fluorescence titrations, Job’s plot method and 1H-NMR titrations, a 1:2 stoichiometry was identified. The binding constant between L and Cu2+ was calculated to be Ka = 1.222 × 103. In addition, the AIEE fluorescent probe L could be applied to detection in real water samples with satisfactory recoveries in the range 99.10–102.90% in lake water and 98.49–102.37% in tap water.  相似文献   

6.
Non-catalysed and catalysed reactions of aluminium reagents with furans, dihydrofurans and dihydropyrans were investigated and lead to ring-expanded products due to the insertion of the aluminium reagent into a C–O bond of the heterocycle. Specifically, the reaction of [{(ArNCMe)2CH}Al] (Ar = 2,6-di-iso-propylphenyl, 1) with furans proceeded between 25 and 80 °C leading to dearomatised products due to the net transformation of a sp2 C–O bond into a sp2 C–Al bond. The kinetics of the reaction of 1 with furan were found to be 1st order with respect to 1 with activation parameters ΔH = +19.7 (±2.7) kcal mol−1, ΔS = −18.8 (±7.8) cal K−1 mol−1 and ΔG298 K = +25.3 (±0.5) kcal mol−1 and a KIE of 1.0 ± 0.1. DFT calculations support a stepwise mechanism involving an initial (4 + 1) cycloaddition of 1 with furan to form a bicyclic intermediate that rearranges by an α-migration. The selectivity of ring-expansion is influenced by factors that weaken the sp2 C–O bond through population of the σ*-orbital. Inclusion of [Pd(PCy3)2] as a catalyst in these reactions results in expansion of the substrate scope to include 2,3-dihydrofurans and 3,4-dihydropyrans and improves selectivity. Under catalysed conditions, the C–O bond that breaks is that adjacent to the sp2C–H bond. The aluminium(iii) dihydride reagent [{(MesNCMe)2CH}AlH2] (Mes = 2,4,6-trimethylphenyl, 2) can also be used under catalytic conditions to effect a dehydrogenative ring-expansion of furans. Further mechanistic analysis shows that C–O bond functionalisation occurs via an initial C–H bond alumination. Kinetic products can be isolated that are derived from installation of the aluminium reagent at the 2-position of the heterocycle. C–H alumination occurs with a KIE of 4.8 ± 0.3 consistent with a turnover limiting step involving oxidative addition of the C–H bond to the palladium catalyst. Isomerisation of the kinetic C–H aluminated product to the thermodynamic C–O ring expansion product is an intramolecular process that is again catalysed by [Pd(PCy3)2]. DFT calculations suggest that the key C–O bond breaking step involves attack of an aluminium based metalloligand on the 2-palladated heterocycle. The new methodology has been applied to important platform chemicals from biomass.

Non-catalysed and catalysed reactions of aluminium reagents with furans, dihydrofurans and dihydropyrans were investigated and lead to ring-expanded products due to the insertion of the aluminium reagent into a C–O bond of the heterocycle.  相似文献   

7.
Spruce (Picea abies) wood hemicelluloses have been obtained by the noncatalytic and catalytic oxidative delignification in the acetic acid-water-hydrogen peroxide medium in a processing time of 3–4 h and temperatures of 90–100 °C. In the catalytic process, the H2SO4, MnSO4, TiO2, and (NH4)6Mo7O24 catalysts have been used. A polysaccharide yield of up to 11.7 wt% has been found. The hemicellulose composition and structure have been studied by a complex of physicochemical methods, including gas and gel permeation chromatography, Fourier-transform infrared spectroscopy, and thermogravimetric analysis. The galactose:mannose:glucose:arabinose:xylose monomeric units in a ratio of 5:3:2:1:1 have been identified in the hemicelluloses by gas chromatography. Using gel permeation chromatography, the weight average molar mass Mw of hemicelluloses has been found to attain 47,654 g/mol in noncatalytic delignification and up to 42,793 g/mol in catalytic delignification. Based on the same technique, a method for determining the α and k parameters of the Mark–Kuhn–Houwink equation for hemicelluloses has been developed; it has been established that these parameters change between 0.33–1.01 and 1.57–472.17, respectively, depending on the catalyst concentration and process temperature and time. Moreover, the FTIR spectra of the hemicellulose samples contain all the bands characteristic of heteropolysaccharides, specifically, 1069 cm−1 (C–O–C and C–O–H), 1738 cm−1 (ester C=O), 1375 cm−1 (–C–CH3), 1243 cm−1 (–C–O–), etc. It has been determined by the thermogravimetric analysis that the hemicelluloses isolated from spruce wood are resistant to heating to temperatures of up to ~100 °C and, upon further heating, start destructing at an increasing rate. The antioxidant activity of the hemicelluloses has been examined using the compounds simulating the 2,2-diphenyl-2-picrylhydrazyl free radicals.  相似文献   

8.
This study presents the construction and dielectric properties investigation of atomic-layer-deposition Al2O3/TiO2/HfO2 dielectric-film-based metal–insulator–metal (MIM) capacitors. The influence of the dielectric layer material and thickness on the performance of MIM capacitors are also systematically investigated. The morphology and surface roughness of dielectric films for different materials and thicknesses are analyzed via atomic force microscopy (AFM). Among them, the 25 nm Al2O3-based dielectric capacitor exhibits superior comprehensive electrical performance, including a high capacitance density of 7.89 fF·µm−2, desirable breakdown voltage and leakage current of about 12 V and 1.4 × 10−10 A·cm−2, and quadratic voltage coefficient of 303.6 ppm·V−2. Simultaneously, the fabricated capacitor indicates desirable stability in terms of frequency and bias voltage (at 1 MHz), with the corresponding slight capacitance density variation of about 0.52 fF·µm−2 and 0.25 fF·µm−2. Furthermore, the mechanism of the variation in capacitance density and leakage current might be attributed to the Poole–Frenkel emission and charge-trapping effect of the high-k materials. All these results indicate potential applications in integrated passive devices.  相似文献   

9.
The self-assembly of 2,6-diformyl-4-methylphenol (DFMP) and 1-amino-2-propanol (AP)/2-amino-1,3-propanediol (APD) in the presence of copper(II) ions results in the formation of six new supramolecular architectures containing two versatile double Schiff base ligands (H3L and H5L1) with one-, two-, or three-dimensional structures involving diverse nuclearities: tetranuclear [Cu4(HL2−)2(N3)4]·4CH3OH·56H2O (1) and [Cu4(L3−)2(OH)2(H2O)2] (2), dinuclear [Cu2(H3L12−)(N3)(H2O)(NO3)] (3), polynuclear {[Cu2(H3L12−)(H2O)(BF4)(N3)]·H2O}n (4), heptanuclear [Cu7(H3L12−)2(O)2(C6H5CO2)6]·6CH3OH·44H2O (5), and decanuclear [Cu10(H3L12−)4(O)2(OH)2(C6H5CO2)4] (C6H5CO2)2·20H2O (6). X-ray studies have revealed that the basic building block in 1, 3, and 4 is comprised of two copper centers bridged through one μ-phenolate oxygen atom from HL2− or H3L12−, and one μ-1,1-azido (N3) ion and in 2, 5, and 6 by μ-phenoxide oxygen of L3− or H3L12− and μ-O2− or μ3-O2− ions. H-bonding involving coordinated/uncoordinated hydroxy groups of the ligands generates fascinating supramolecular architectures with 1D-single chains (1 and 6), 2D-sheets (3), and 3D-structures (4). In 5, benzoate ions display four different coordination modes, which, in our opinion, is unprecedented and constitutes a new discovery. In 1, 3, and 5, Cu(II) ions in [Cu2] units are antiferromagnetically coupled, with J ranging from −177 to −278 cm−1.  相似文献   

10.
Supramolecular photocatalysts comprising [Ru(diimine)3]2+ photosensitiser and fac-[Re(diimine)(CO)3{OC(O)OC2H4NR2}] catalyst units can be used to reduce CO2 to CO with high selectivity, durability and efficiency. In the presence of triethanolamine, the Re catalyst unit efficiently takes up CO2 to form a carbonate ester complex, and then direct photocatalytic reduction of a low concentration of CO2, e.g., 10% CO2, can be achieved using this type of supramolecular photocatalyst. In this work, the mechanism of the photocatalytic reduction of CO2 was investigated applying such a supramolecular photocatalyst, RuC2Re with a carbonate ester ligand, using time-resolved visible and infrared spectroscopies and electrochemical methods. Using time-resolved spectroscopic measurements, the kinetics of the photochemical formation processes of the one-electron-reduced species RuC2(Re)−, which is an essential intermediate in the photocatalytic reaction, were clarified in detail and its electronic structure was elucidated. These studies also showed that RuC2(Re)− is stable for 10 ms in the reaction solution. Cyclic voltammograms measured at various scan rates besides temperature and kinetic analyses of RuC2(Re)− produced by steady-state irradiation indicated that the subsequent reaction of RuC2(Re)− proceeds with an observed first-order rate constant of approximately 1.8 s−1 at 298 K and is a unimolecular reaction, independent of the concentrations of both CO2 and RuC2(Re)−.

Formation processes and reactivity of an important intermediate of photocatalytic CO2 reduction, one-electron reduced species of a Ru(ii)–Re(i) supramolecular photocatalyst with a carbonate ester ligand, were investigated in detail.  相似文献   

11.
The hydrophobic azo dye 6-hexyl-4-(2-thiazolylazo)resorcinol (HTAR, H2L) was studied as part of a system for the centrifuge-less cloud point extraction (CL-CPE) and spectrophotometric determination of traces of cobalt. The extracted 1:2 (Co:HTAR) complex, [CoIII(HL)(L2−)]0, shows an absorption maximum at 553 nm and contains HTAR in two different acid–base forms. Optimum conditions for its formation and CL-CPE were found as follows: 1 × 10−5 mol L−1 of HTAR, 1.64% of Triton X-114, pH of 7.8, incubation time of 20 min at ca. 50 °C, and cooling time of 30 min at ca. −20 °C. The linear range, limit of detection, and apparent molar absorptivity coefficient were 5.4–189 ng mL−1, 1.64 ng mL−1, and 2.63 × 105 L mol−1 cm−1, respectively. The developed procedure does not use any organic solvents and can be described as simple, cheap, sensitive, convenient, and environmentally friendly. It was successfully applied to the analysis of artificial mixtures and real samples, such as steel, dental alloy, rainwater, ampoules of vitamin B12, and saline solution for intravenous infusion.  相似文献   

12.
The oxidation of transition metals such as manganese and copper by dioxygen (O2) is of great interest to chemists and biochemists for fundamental and practical reasons. In this report, the O2 reactivities of 1:1 and 1:2 mixtures of [(TPP)MnII] (1; TPP: Tetraphenylporphyrin) and [(tmpa)CuI(MeCN)]+ (2; TMPA: Tris(2-pyridylmethyl)amine) in 2-methyltetrahydrofuran (MeTHF) are described. Variable-temperature (−110 °C to room temperature) absorption spectroscopic measurements support that, at low temperature, oxygenation of the (TPP)Mn/Cu mixtures leads to rapid formation of a cupric superoxo intermediate, [(tmpa)CuII(O2•–)]+ (3), independent of the presence of the manganese porphyrin complex (1). Complex 3 subsequently reacts with 1 to form a heterobinuclear μ-peroxo species, [(tmpa)CuII–(O22–)–MnIII(TPP)]+ (4; λmax = 443 nm), which thermally converts to a μ-oxo complex, [(tmpa)CuII–O–MnIII(TPP)]+ (5; λmax = 434 and 466 nm), confirmed by electrospray ionization mass spectrometry and nuclear magnetic resonance spectroscopy. In the 1:2 (TPP)Mn/Cu mixture, 4 is subsequently attacked by a second equivalent of 3, giving a bis-μ-peroxo species, i.e., [(tmpa)CuII−(O22−)−MnIV(TPP)−(O22−)−CuII(tmpa)]2+ (7; λmax = 420 nm and δpyrrolic = −44.90 ppm). The final decomposition product of the (TPP)Mn/Cu/O2 chemistry in MeTHF is [(TPP)MnIII(MeTHF)2]+ (6), whose X-ray structure is also presented and compared to literature analogs.  相似文献   

13.
Summary A ternary solid complex Gd(Et2dtc)3(phen) has been obtained from reactions of sodium diethyldithiocarbamate (NaEt2dtc), 1,10-phenanthroline (phen) and hydrated gadolinium chloride in absolute ethanol. The title complex was described by chemical and elemental analyses, TG-DTG and IR spectrum. The enthalpy change of liquid-phase reaction of formation of the complex, ΔrHΘm(l), was determined as (-11.628±0.0204) kJ mol-1 at 298.15 K by a RD-496 III heat conduction microcalorimeter. The enthalpy change of the solid-phase reaction of formation of the complex, ΔrHΘm(s), was calculated as (145.306±0.519) kJ mol-1 on the basis of a designed thermochemical cycle. The thermodynamics of reaction of formation of the complex was investigated by changing the temperature of liquid-phase reaction. Fundamental parameters, the apparent reaction rate constant (k), the apparent activation energy (E), the pre-exponential constant (A), the reaction order (n), the activation enthalpy (ΔrHΘ), the activation entropy (ΔrSΘ), the activation free energy (ΔrGΘ) and the enthalpy (ΔrHΘ), were obtained by combination of the thermodynamic and kinetic equations for the reaction with the data of thermokinetic experiments. The constant-volume combustion energy of the complex, ΔcU, was determined as (-18673.71±8.15) kJ mol-1 by a RBC-II rotating-bomb calorimeter at 298.15 K. Its standard enthalpy of combustion, ΔcHΘm, and standard enthalpy of formation, ΔfHΘm, were calculated to be (-18692.92±8.15) kJ mol-1 and (-51.28±9.17) kJ mol-1, respectively.  相似文献   

14.
Wild thyme (Thymus serpyllum L.) herbal dust has been recognized as a potential underutilized resource for the recovery of antioxidants. The aim of this paper was to optimize natural deep eutectic solvent (NADES) extraction of polyphenols to obtain improved antioxidant activity of extracts determined by selected in vitro assays (DPPH, FRAP, and ABTS). Twenty different NADES systems were investigated in the first step of the screening of the extraction solvent and l-proline (Pro)–glycerine (Gly) based solvents provided the best results. Preliminary experiments organized by 25−1 fractional factorial design narrowed down the number of extraction factors from five (temperature, extraction time, NADES type, water content and L/S ratio) to three and determined their experimental domain for the final step. A face-centered central composite design with temperature (40–55–70 °C), extraction time (60–120–180 min) and L/S ratio (10–20–30 g NADES/g sample) was applied for influence analysis and process optimization. Multi-response optimization suggested a temperature of 65 °C, time of extraction of 180 min and L/S ratio of 28 g NADES/g DW as optimal extraction parameters. Experimental validation confirmed good agreement between experimental and predicted results in the extract obtained at optimal conditions and the interactions in the most suitable NADES (N16; Pro–Gly–H2O; 1:2:1) were confirmed by the 1H-NMR.  相似文献   

15.
UV–Vis spectroscopy was used to investigate two new charge transfer (CT) complexes formed between the K+-channel-blocker amifampridine (AMFP) drug and the two π-acceptors 2,3-dichloro-5,6-dicyano-p-benzoquinone (DDQ) and tetracyanoethylene (TCNE) in different solvents. The molecular composition of the new CT complexes was estimated using the continuous variations method and found to be 1:1 for both complexes. The formed CT complexes’ electronic spectra data were further employed for calculating the formation constants (KCT), molar extinction coefficients (εCT), and physical parameters at various temperatures, and the results demonstrated the high stability of both complexes. In addition, sensitive spectrophotometric methods for quantifying AMFP in its pure form were proposed and statistically validated. Furthermore, DFT calculations were used to predict the molecular structures of AMFP–DDQ and AMFP–TCNE complexes in CHCl3. TD-DFT calculations were also used to predict the electronic spectra of both complexes. A CT-based transition band (exp. 399 and 417 nm) for the AMFP–TCNE complex was calculated at 411.5 nm (f = 0.105, HOMO-1 LUMO). The two absorption bands at 459 nm (calc. 426.9 nm, f = 0.054) and 584 nm (calc. 628.1 nm, f = 0.111) of the AMFP–DDQ complex were theoretically assigned to HOMO-1 LUMO and HOMO LUMO excitations, respectively.  相似文献   

16.
We characterized the stationary points along the nucleophilic substitution (SN2), oxidative insertion (OI), halogen abstraction (XA), and proton transfer (PT) product channels of M + CH3X (M = Cu, Ag, Au; X = F, Cl, Br, I) reactions using the CCSD(T)/aug-cc-pVTZ level of theory. In general, the reaction energies follow the order of PT > XA > SN2 > OI. The OI channel that results in oxidative insertion complex [CH3–M–X] is most exothermic, and can be formed through a front-side attack of M on the C-X bond via a high transition state OxTS or through a SN2-mediated halogen rearrangement path via a much lower transition state invTS. The order of OxTS > invTS is inverted when changing M to Pd, a d10 metal, because the symmetry of their HOMO orbital is different. The back-side attack SN2 pathway proceeds via typical Walden-inversion transition state that connects to pre- and post-reaction complexes. For X = Cl/Br/I, the invSN2-TS’s are, in general, submerged. The shape of this M + CH3X SN2 PES is flatter as compared to that of a main-group base like F + CH3X, whose PES has a double-well shape. When X = Br/I, a linear halogen-bonded complex [CH3−X∙··M] can be formed as an intermediate upon the front-side attachment of M on the halogen atom X, and it either dissociates to CH3 + MX through halogen abstraction or bends the C-X-M angle to continue the back-side SN2 path. Natural bond orbital analysis shows a polar covalent M−X bond is formed within oxidative insertion complex [CH3–M–X], whereas a noncovalent M–X halogen-bond interaction exists for the [CH3–X∙··M] complex. This work explores competing channels of the M + CH3X reaction in the gas phase and the potential energy surface is useful in understanding the dynamic behavior of the title and analogous reactions.  相似文献   

17.
18.
Co-crystallization of the prominent Fe(ii) spin-crossover (SCO) cation, [Fe(3-bpp)2]2+ (3-bpp = 2,6-bis(pyrazol-3-yl)pyridine), with a fractionally charged TCNQδ radical anion has afforded a hybrid complex [Fe(3-bpp)2](TCNQ)3·5MeCN (1·5MeCN, where δ = −0.67). The partially desolvated material shows semiconducting behavior, with the room temperature conductivity σRT = 3.1 × 10−3 S cm−1, and weak modulation of conducting properties in the region of the spin transition. The complete desolvation, however, results in the loss of hysteretic behavior and a very gradual SCO that spans the temperature range of 200 K. A related complex with integer-charged TCNQ anions, [Fe(3-bpp)2](TCNQ)2·3MeCN (2·3MeCN), readily loses the interstitial solvent to afford desolvated complex 2 that undergoes an abrupt and hysteretic spin transition centered at 106 K, with an 11 K thermal hysteresis. Complex 2 also exhibits a temperature-induced excited spin-state trapping (TIESST) effect, upon which a metastable high-spin state is trapped by flash-cooling from room temperature to 10 K. Heating above 85 K restores the ground-state low-spin configuration. An approach to improve the structural stability of such complexes is demonstrated by using a related ligand 2,6-bis(benzimidazol-2′-yl)pyridine (bzimpy) to obtain [Fe(bzimpy)2](TCNQ)6·2Me2CO (4) and [Fe(bzimpy)2](TCNQ)5·5MeCN (5), both of which exist as LS complexes up to 400 K and exhibit semiconducting behavior, with σRT = 9.1 × 10−2 S cm−1 and 1.8 × 10−3 S cm−1, respectively.

Co-crystallization of the cationic complex [Fe(3-bpp)2]2+ with fractionally charged TCNQδ anions (0 < δ < 1) affords semiconducting spin-crossover (SCO) materials. The abruptness of SCO is strongly dependent on the interstitial solvent content.  相似文献   

19.
Rare-earth perchlorate complex coordinated with glycine [Nd2(Gly)6(H2O)4](ClO4)6·5H2O was synthesized and its structure was characterized by using thermogravimetric analysis (TG), differential thermal analysis (DTA), chemical analysis and elementary analysis. Its purity was 99.90%. Heat capacity measurement was carried out with a high-precision fully-automatic adiabatic calorimeter over the temperature range from 78 to 369 K. A solid-solid phase transformation peak was observed at 256.97 K, with the enthalpy and entropy of the phase transformation process are 4.438 kJ mol−1 and 17.270 J K−1 mol−1, respectively. There is a big dehydrated peak appears at 330 K, its decomposition temperature, decomposition enthalpy and entropy are 320.606 K, 41.364 kJ mol−1 and 129.018 J K−1 mol−1, respectively. The polynomial equations of heat capacity of this compound in different temperature ranges have been fitted. The standard enthalpy of formation was determined to be −8023.002 kJ mol−1 with isoperibol reaction calorimeter at 298.15 K.  相似文献   

20.
Triplet diradicals have attracted tremendous attention due to their promising application in organic spintronics, organic magnets and spin filters. However, very few examples of triplet diradicals with singlet–triplet energy gaps (ΔEST) over 0.59 kcal mol−1 (298 K) have been reported to date. In this work, we first proved that the dianion of 2,7-di-tert-butyl-pyrene-4,5,9,10-tetraone (2,7-tBu2-PTO) was a triplet ground state diradical in the magnesium complex 1 with a singlet–triplet energy gap ΔEST = 0.94 kcal mol−1 (473 K). This is a rare example of stable diradicals with singlet–triplet energy gaps exceeding the thermal energy at room temperature (298 K). Moreover, the iron analog 2 containing the 2,7-tBu2-PTO diradical dianion was isolated, which was the first single-molecule magnet bridged by a diradical dianion. When 2 was doubly reduced to the dianion salt 2K2, single-molecule magnetism was switched off, highlighting the importance of diradicals in single-molecule magnetism.

We report a triplet diradical dianion in magnesium complex with ΔEST = 0.94 kcal mol−1 (473 K). Its iron analog is the first single-molecule magnet bridged by a diradical dianion, and the SMM property is switched off through two-electron reduction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号