首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In this study, two previously undescribed diterpenoids, (5R,10S,16R)-11,16,19-trihydroxy-12-O-β-d-glucopyranosyl-(1→2)-β-d-glucopyranosyl-17(15→16),18(4→3)-diabeo-3,8,11,13-abietatetraene-7-one (1) and (5R,10S,16R)-11,16-dihydroxy-12-O-β-d-glucopyranosyl-(1→2)-β-d-glucopyranosyl-17(15→16),18(4→3)-diabeo-4-carboxy-3,8,11,13-abietatetraene-7-one (2), and one known compound, the C13-nor-isoprenoid glycoside byzantionoside B (3), were isolated from the leaves of Clerodendrum infortunatum L. (Lamiaceae). Structures were established based on spectroscopic and spectrometric data and by comparison with literature data. The three terpenoids, along with five phenylpropanoids: 6′-O-caffeoyl-12-glucopyranosyloxyjasmonic acid (4), jionoside C (5), jionoside D (6), brachynoside (7), and incanoside C (8), previously isolated from the same source, were tested for their in vitro antidiabetic (α-amylase and α-glucosidase), anticancer (Hs578T and MDA-MB-231), and anticholinesterase activities. In an in vitro test against carbohydrate digestion enzymes, compound 6 showed the most potent effect against mammalian α-amylase (IC50 3.4 ± 0.2 μM) compared to the reference standard acarbose (IC50 5.9 ± 0.1 μM). As yeast α-glucosidase inhibitors, compounds 1, 2, 5, and 6 displayed moderate inhibitory activities, ranging from 24.6 to 96.0 μM, compared to acarbose (IC50 665 ± 42 μM). All of the tested compounds demonstrated negligible anticholinesterase effects. In an anticancer test, compounds 3 and 5 exhibited moderate antiproliferative properties with IC50 of 94.7 ± 1.3 and 85.3 ± 2.4 μM, respectively, against Hs578T cell, while the rest of the compounds did not show significant activity (IC50 > 100 μM).  相似文献   

2.
Qin Pi (Fraxinus chinensis Roxb.) is commercially used in healthcare products for the improvement of intestinal function and gouty arthritis in many countries. Three new secoiridoid glucosides, (8E)-4′′-O-methylligstroside (1), (8E)-4′′-O-methyldemethylligstroside (2), and 3′′,4′′-di-O-methyl-demethyloleuropein (3), have been isolated from the stem bark of Fraxinus chinensis, together with 23 known compounds (4–26). The structures of the new compounds were established by spectroscopic analyses (1D, 2D NMR, IR, UV, and HRESIMS). Among the isolated compounds, (8E)-4′′-O-methylligstroside (1), (8E)-4′′-O-methyldemethylligstroside (2), 3′′,4′′-di-O-methyldemethyloleuropein (3), oleuropein (6), aesculetin (9), isoscopoletin (11), aesculetin dimethyl ester (12), fraxetin (14), tyrosol (21), 4-hydroxyphenethyl acetate (22), and (+)-pinoresinol (24) exhibited inhibition (IC50 ≤ 7.65 μg/mL) of superoxide anion generation by human neutrophils in response to formyl-L-methionyl-L-leuckyl-L-phenylalanine/cytochalasin B (fMLP/CB). Compounds 1, 9, 11, 14, 21, and 22 inhibited fMLP/CB-induced elastase release with IC50 ≤ 3.23 μg/mL. In addition, compounds 2, 9, 11, 14, and 21 showed potent inhibition with IC50 values ≤ 27.11 μM, against lipopolysaccharide (LPS)-induced nitric oxide (NO) generation. The well-known proinflammatory cytokines, tumor necrosis factor-alpha (TNF-α) and interleukin 6 (IL-6), were also inhibited by compounds 1, 9, and 14. Compounds 1, 9, and 14 displayed an anti-inflammatory effect against NO, TNF-α, and IL-6 through the inhibition of activation of MAPKs and IκBα in LPS-activated macrophages. In addition, compounds 1, 9, and 14 stimulated anti-inflammatory M2 phenotype by elevating the expression of arginase 1 and Krüppel-like factor 4 (KLF4). The above results suggested that compounds 1, 9, and 14 could be considered as potential compounds for further development of NO production-targeted anti-inflammatory agents.  相似文献   

3.
This study represents the design and synthesis of a new set of hybrid and chimeric derivatives of 4,5-dihydro-4,4-dimethyl-1H-[1,2]dithiolo[3,4-c]quinoline-1-thiones, the structure of which the tricyclic fragment linearly bound or/and condensed with another heterocyclic fragment. Using the PASS Online software, among the previously synthesized and new derivatives of 1,2-dithiolo[3,4-c]quinoline-1-thione we identified 12 substances with pleiotropic activity, including chemoprotective and antitumor activity. All the synthesized derivatives were screened for their inhibitory assessment against a number of kinases. Compounds which exhibited prominent inhibition percentage in cells (>85%) were also examined for their inhibitory efficiency on human kinases via ELISA utilizing sorafenib as a reference standard to estimate their IC50 values. It was revealed that compounds 2a, 2b, 2c, and 2q displayed a significant inhibition JAK3 (IC50 = 0.36 μM, 0.38 μM, 0.41 μM, and 0.46 μM, respectively); moreover, compounds 2a and 2b displayed excellent activities against NPM1-ALK (IC50 = 0.54 μM, 0.25 μM, respectively), against cRAF[Y340D][Y341D], compound 2c showed excellent activity, and compound 2q showed weak activity (IC50 = 0.78 μM, 5.34 μM, respectively) (sorafenib IC50 = 0.78 μM, 0.43 μM, 1.95 μM, respectively). Thus, new promising preferred structures for the creation of drugs for the treatment of cancer and other multifactorial diseases in the future have been found.  相似文献   

4.
Caffeic acid and related natural compounds were previously described as Leishmania amazonensis arginase (L-ARG) inhibitors, and against the whole parasite in vitro. In this study, we tested cinnamides that were previously synthesized to target human arginase. The compound caffeic acid phenethyl amide (CAPA), a weak inhibitor of human arginase (IC50 = 60.3 ± 7.8 μM) was found to have 9-fold more potency against L-ARG (IC50 = 6.9 ± 0.7 μM). The other compounds that did not inhibit human arginase were characterized as L-ARG, showing an IC50 between 1.3–17.8 μM, and where the most active was compound 15 (IC50 = 1.3 ± 0.1 μM). All compounds were also tested against L. amazonensis promastigotes, and only the compound CAPA showed an inhibitory activity (IC50 = 80 μM). In addition, in an attempt to gain an insight into the mechanism of competitive L-ARG inhibitors, and their selectivity over mammalian enzymes, we performed an extensive computational investigation, to provide the basis for the selective inhibition of L-ARG for this series of compounds. In conclusion, our results indicated that the compounds based on cinnamoyl or 3,4-hydroxy cinnamoyl moiety could be a promising starting point for the design of potential antileishmanial drugs based on selective L-ARG inhibitors.  相似文献   

5.
Two new A-ring contracted triterpenoids, madengaisu A and madengaisu B, and one undescribed ent-kaurane diterpenoid, madengaisu C, along with 20 known compounds were isolated from the roots of Potentilla freyniana Bornm. The structures were elucidated using extensive spectroscopic techniques, including 1D and 2D-NMR, HR-ESI-MS, ECD spectra, IR, and UV analysis. Moreover, all isolated constituents were evaluated for their anti-proliferative activity against RA-FLS cells and cytotoxic activities against the human cancer cell lines Hep-G2, HCT-116, BGC-823, and MCF-7. Ursolic acid and pomolic acid displayed moderate inhibitory activity in RA-FLS cells with IC50 values of 24.63 ± 1.96 and 25.12 ± 1.97 μM, respectively. Hyptadienic acid and 2α,3β-dihydroxyolean-12-en-28-oic acid 28-O-β-d-glucopyranoside exhibited good cytotoxicity against Hep-G2 cells with IC50 values of 25.16 ± 2.55 and 17.66 ± 1.82 μM, respectively. In addition, 2α,3β-dihydroxyolean-13(18)-en-28-oic acid and alphitolic acid were observed to inhibit HCT-116 cells (13.25 ± 1.65 and 21.62 ± 0.33 μM, respectively), while madengaisu B and 2α,3β-dihydroxyolean-13(18)-en-28-oic acid showed cytotoxic activities against BGC-823 cells with IC50 values of 24.76 ± 0.94 and 26.83 ± 2.52 μM, respectively, which demonstrated that triterpenes from P. freyniana may serve as therapeutic agents for RA and cancer treatment.  相似文献   

6.
As part of our continuous studies involving the prospection of natural products from Brazilian flora aiming at the discovery of prototypes for the development of new antiparasitic drugs, the present study describes the isolation of two natural acetylene acetogenins, (2S,3R,4R)-3-hydroxy-4-methyl-2-(n-eicos-11′-yn-19′-enyl)butanolide (1) and (2S,3R,4R)-3-hydroxy-4-methyl-2-(n-eicos-11′-ynyl)butanolide (2), from the seeds of Porcelia macrocarpa (Warm.) R.E. Fries (Annonaceae). Using an ex-vivo assay, compound 1 showed an IC50 value of 29.9 μM against the intracellular amastigote forms of Leishmania (L.) infantum, whereas compound 2 was inactive. These results suggested that the terminal double bond plays an important role in the activity. This effect was also observed for the semisynthetic acetylated (1a and 2a) and eliminated (1b and 2b) derivatives, since only compounds containing a double bond at C-19 displayed activity, resulting in IC50 values of 43.3 μM (1a) and 23.1 μM (1b). In order to evaluate the effect of the triple bond in the antileishmanial potential, the mixture of compounds 1 + 2 was subjected to catalytic hydrogenation to afford a compound 3 containing a saturated side chain. The antiparasitic assays performed with compound 3, acetylated (3a), and eliminated (3b) derivatives confirmed the lack of activity. Furthermore, an in-silico study using the SwissADME online platform was performed to bioactive compounds 1, 1a, and 1b in order to investigate their physicochemical parameters, pharmacokinetics, and drug-likeness. Despite the reduced effect against amastigote forms of the parasite to the purified compounds, different mixtures of compounds 1 + 2, 1a + 2a, and 1b + 2b were prepared and exhibited IC50 values ranging from 7.9 to 38.4 μM, with no toxicity for NCTC mammalian cells (CC50 > 200 μM). Selectivity indexes to these mixtures ranged from >5.2 to >25.3. The obtained results indicate that seeds of Porcelia macrocarpa are a promising source of interesting prototypes for further modifications aiming at the discovery of new antileishmanial drugs.  相似文献   

7.
In this paper, the syntheses of twelve asymmetric curcumin analogs using Pabon’s method are reported. Generally, the previously reported yields of asymmetric curcuminoids, such as 9a (53%), 9c (38%), and 9k (38%), have been moderate or low. Herein, we propose that the low yields were due to the presence of water and n-BuNH2 in the reaction media. To prove this formulated hypothesis, we have demonstrated that the yields can be improved by adding molecular sieves (MS) (4 Å) to the reaction mixture, thus reducing the interference of water. Therefore, improved yields (41–76%) were obtained, except for 9b (36.7%), 9g (34%), and 9l (39.5%). Furthermore, compounds 9b, 9d, 9e, 9f, 9g, 9h, 9i, 9j, and 9l are reported herein for the first time. The structures of these synthetic compounds were determined by spectroscopic and mass spectrometry analyses. The free radical scavenging ability of these synthetic asymmetric curcuminoids was evaluated and compared to that of the positive control butylated hydroxytoluene (BHT). Among the synthesized asymmetric curcuminoids, compounds 9a (IC50 = 37.57 ± 0.89 μM) and 9e (IC50 = 37.17 ± 1.76 μM) possessed effective 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging abilities, and compounds 9h (IC50 = 11.36 ± 0.65 μM) and 9i (IC50 = 10.91 ± 0.77 μM) displayed potent 2,2’-azinobis-(3-ethylbenzthiazoline-6-sulphonate) (ABTS) radical scavenging abilities comparable to that of curcumin (IC50 = 10.14 ± 1.04 μM). Furthermore, all the synthetic asymmetric curcuminoids were more active than BHT.  相似文献   

8.
Bioassay-guided fractionation of extracts derived from solid cultures of a Herbidospora daliensis originating from Taiwan led to the isolation of five new compounds, for which we propose the name herbidosporadalins A–E (1–5), one isolated for the first time, herbidosporadalin F (6), together with two known compounds (7 & 8). Their structures were elucidated by spectroscopic analyses, including 1D- and 2D-NMR experiments with those of known analogues, and on the basis of HR-EI-MS mass spectrometry, their anti-inflammatory activities were also evaluated. Of these isolates, herbidosporadalin A (1), B (2), F (6) and G (8) showed NO inhibitory activity, with IC50 values of 11.8 ± 0.9, 7.1 ± 2.9, 17.8 ± 1.7, and 13.3 ± 6.5 μM, stronger than the positive control quercetin (IC50 = 36.8 ± 1.3 μM). To the best of our knowledge, this is the first report on 3,4-seco-friedelane metabolites (5, 6 & 8) from the genus Herbidospora.  相似文献   

9.
The present study investigated the antidiabetic properties of the extracts and fractions from leaves and stem bark of M. glabra based on dipeptidyl peptidase-4 (DPP-4) and α-Amylase inhibitory activity assays. The chloroform extract of the leaves was found to be most active towards inhibition of DPP-4 and α-Amylase with IC50 of 169.40 μg/mL and 303.64 μg/mL, respectively. Bioassay-guided fractionation of the leaves’ chloroform extract revealed fraction 4 (CF4) as the most active fraction (DPP-4 IC50: 128.35 μg/mL; α-Amylase IC50: 170.19 μg/mL). LC-MS/MS investigation of CF4 led to the identification of trans-decursidinol (1), swermirin (2), methyl 3,4,5-trimethoxycinnamate (3), renifolin (4), 4′,5,6,7-tetramethoxy-flavone (5), isorhamnetin (6), quercetagetin-3,4′-dimethyl ether (7), 5,3′,4′-trihydroxy-6,7-dimethoxy-flavone (8), and 2-methoxy-5-acetoxy-fruranogermacr-1(10)-en-6-one (9) as the major components. The computational study suggested that (8) and (7) were the most potent DPP-4 and α-Amylase inhibitors based on their lower binding affinities and extensive interactions with critical amino acid residues of the respective enzymes. The binding affinity of (8) with DPP-4 (−8.1 kcal/mol) was comparable to that of sitagliptin (−8.6 kcal/mol) while the binding affinity of (7) with α-Amylase (−8.6 kcal/mol) was better than acarbose (−6.9 kcal/mol). These findings highlight the phytochemical profile and potential antidiabetic compounds from M. glabra that may work as an alternative treatment for diabetes.  相似文献   

10.
Piper nigrum, or black pepper, produces piperine, an alkaloid that has diverse pharmacological activities. In this study, N-aryl amide piperine analogs were prepared by semi-synthesis involving the saponification of piperine (1) to yield piperic acid (2) followed by esterification to obtain compounds 3, 4, and 5. The compounds were examined for their antitrypanosomal, antimalarial, and anti-SARS-CoV-2 main protease activities. The new 2,5-dimethoxy-substituted phenyl piperamide 5 exhibited the most robust biological activities with no cytotoxicity against mammalian cell lines, Vero and Vero E6, as compared to the other compounds in this series. Its half-maximal inhibitory concentration (IC50) for antitrypanosomal activity against Trypanosoma brucei rhodesiense was 15.46 ± 3.09 μM, and its antimalarial activity against the 3D7 strain of Plasmodium falciparum was 24.55 ± 1.91 μM, which were fourfold and fivefold more potent, respectively, than the activities of piperine. Interestingly, compound 5 inhibited the activity of 3C-like main protease (3CLPro) toward anti-SARS-CoV-2 activity at the IC50 of 106.9 ± 1.2 μM, which was threefold more potent than the activity of rutin. Docking and molecular dynamic simulation indicated that the potential binding of 5 in the 3CLpro active site had the improved binding interaction and stability. Therefore, new aryl amide analogs of piperine 5 should be investigated further as a promising anti-infective agent against human African trypanosomiasis, malaria, and COVID-19.  相似文献   

11.
Our previous study found that desmethylxanthohumol (1) inhibited α-glucosidase in vitro. Recently, further investigations revealed that dehydrocyclodesmethylxanthohumol (2) and its dimer analogue rottlerone (3) exhibited more potent α-glucosidase inhibitory activity than 1. The aim of this study was to synthesize a series of rottlerone analogues and evaluate their α-glucosidase and DPP-4 dual inhibitory activity. The results showed that compounds 4d and 5d irreversibly and potently inhibited α-glucosidase (IC50 = 0.22 and 0.12 μM) and moderately inhibited DPP-4 (IC50 = 23.59 and 26.19 μM), respectively. In addition, compounds 4d and 5d significantly promoted glucose consumption, with the activity of 5d at 0.2 μM being comparable to that of metformin at a concentration of 1 mM.  相似文献   

12.
In this study, methanol extracts (MEs) and essential oil (EO) of Angelica purpurascens (Avé-Lall.) Gill obtained from different parts (root, stem, leaf, and seed) were evaluated in terms of antioxidant activity, total phenolics, compositions of phenolic compound, and essential oil with the methods of 2,2-azino-bis(3ethylbenzo-thiazoline-6-sulfonic acid (ABTS•+), 2,2-diphenyl-1-picrylhydrazil (DPPH•) radical scavenging activities, and ferric reducing/antioxidant power (FRAP), the Folin–Ciocalteu, liquid chromatography−tandem mass spectrometry (LC−MS/MS), and gas chromatography-mass spectrometry (GC−MS), respectively. The root extract of A. purpurascens exhibited the highest ABTS•+, DPPH•, and FRAP activities (IC50: 0.05 ± 0.0001 mg/mL, IC50: 0.06 ± 0.002 mg/mL, 821.04 ± 15.96 µM TEAC (Trolox equivalent antioxidant capacity), respectively). Moreover, EO of A. purpurascens root displayed DPPH• scavenging activity (IC50: 2.95 ± 0.084 mg/mL). The root extract had the highest total phenolic content (438.75 ± 16.39 GAE (gallic acid equivalent), µg/mL)). Twenty compounds were identified by LC−MS/MS. The most abundant phenolics were ferulic acid (244.39 ± 15.64 μg/g extract), benzoic acid (138.18 ± 8.84 μg/g extract), oleuropein (78.04 ± 4.99 μg/g extract), and rutin (31.21 ± 2.00 μg/g extract) in seed, stem, root, and leaf extracts, respectively. According to the GC−MS analysis, the major components were determined as α-bisabolol (22.93%), cubebol (14.39%), α-pinene (11.63%), and α-limonene (9.41%) among 29 compounds. Consequently, the MEs and EO of A. purpurascens can be used as a natural antioxidant source.  相似文献   

13.
Five new triterpenoids, oenotheralanosterols C-G (1–5), with seven known triterpenoidcompounds, namely 2α,3α,19α-trihydroxy-24-norurs4,12-dien-28-oic acid (6), 3β,23-dihydroxy-1-oxo-olean-12-en-28-oic acid (7), remangilone C (8), knoxivalic acid A (9), termichebulolide (10), rosasecotriterpene A (11), androsanortriterpene C (12), were extracted and separated from the dichloromethane part of Oenothera biennis L. The anti-pulmonary fibrosis activities of all the compounds against TGF-β1-induced damage tonormal human lung epithelial (BEAS-2B) cells were investigated in vitro. The results showed that compounds 1–2, 6, 8, and 11 exhibited significant anti-pulmonary fibrosis activities, with EC50 values ranging from 4.7 μM to 9.9 μM.  相似文献   

14.
Diabetes mellitus is a major health problem globally. The management of carbohydrate digestion provides an alternative treatment. Flavonoids constitute the largest group of polyphenolic compounds, produced by plants widely consumed as food and/or used for therapeutic purposes. As such, isoxazoles have attracted the attention of medicinal chemists by dint of their considerable bioactivity. Thus, the main goal of this work was to discover new hybrid molecules with properties of both flavonoids and isoxazoles in order to control carbohydrate digestion. Moreover, the trifluoromethyl group is a key entity in drug development, due to its strong lipophilicity and metabolic stability. Therefore, the present work describes the condensation of a previously synthesized trifluoromethylated flavonol with different aryl nitrile oxides, affording 13 hybrid molecules indicated as trifluoromethylated flavonoid-based isoxazoles. The structures of the obtained compounds were deduced from by 1H NMR, 13C NMR, and HRMS analysis. The 15 newly synthesized compounds inhibited the activity of α-amylase with an efficacy ranging from 64.5 ± 0.7% to 94.7 ± 1.2% at a concentration of 50 μM, and with IC50 values of 12.6 ± 0.2 μM–27.6 ± 1.1 μM. The most effective compounds in terms of efficacy and potency were 3b, 3h, 3j, and 3m. Among the new trifluoromethylated flavonoid-based isoxazoles, the compound 3b was the most effective inhibitor of α-amylase activity (PI = 94.7 ± 1.2% at 50 μM), with a potency (IC50 = 12.6 ± 0.2 μM) similar to that of the positive control acarbose (IC50 = 12.4 ± 0.1 μM). The study of the structure–activity relationship based on the molecular docking analysis showed a low binding energy, a correct mode of interaction in the active pocket of the target enzyme, and an ability to interact with the key residues of glycosidic cleavage (GLU-230 and ASP-206), explaining the inhibitory effects of α-amylase established by several derivatives.  相似文献   

15.
Traditionally, Cymbopogon citratus is used to treat a variety of ailments, including cough, indigestion, fever, and diabetes. The previous chemical and bioactive research on C. citratus mainly focused on its volatile oil. In this study, 20 non-volatile known compounds were isolated from the dried aerial part of C. citratus, and their structures were elucidated by MS, NMR spectroscopy, and comparison with the published spectroscopic data. Among them, 16 compounds were reported for the first time from this plant. The screening results for antioxidant and α-glucosidase inhibitory activities indicated that compounds caffeic acid (5), 1-O-p-coumaroyl-3-O-caffeoylglycerol (8), 1,3-O-dicaffeoylglycerol (9) and luteolin-7-O-β-D-glucopyranoside (12) had potent antioxidant capacities, with IC50 values from 7.28 to 14.81 μM, 1.70 to 2.15 mol Trolox/mol and 1.31 to 2.42 mol Trolox/mol for DPPH, ABTS, and FRAP, respectively. Meanwhile, compounds 8 and 9 also exhibited significant inhibitory activities against α-glucosidase, with IC50 values of 11.45 ± 1.82 μM and 5.46 ± 0.25 μM, respectively, which were reported for the first time for their α-glucosidase inhibitory activities. The molecular docking result provided a molecular comprehension of the interaction between compounds (8 and 9) and α-glucosidase. The significant antioxidant and α-glucosidase inhibitory activities of compounds 8 and 9 suggested that they could be developed into antidiabetic drugs because of their potential regulatory roles on oxidative stress and digestive enzyme.  相似文献   

16.
Three new flavonoid derivatives, melodorones A–C (1–3), together with four known compounds, tectochrysin (4), chrysin (5), onysilin (6), and pinocembrin (7), were isolated from the stem bark of Melodorum fruticosum. Their structures were determined on the basis of extensive spectroscopic methods, including NMR and HRESIMS, and by comparison with the literature. Compounds 1–7 were evaluated for their in vitro α-glucosidase inhibition and cytotoxicity against KB, Hep G2, and MCF7 cell lines. Among them, compound 1 exhibited the best activity against α-glucosidase and was superior to the positive control with an IC50 value of 2.59 μM. On the other hand, compound 1 showed moderate cytotoxicity toward KB, Hep G2, and MCF7 cell lines with the IC50 values of 23.5, 19.8, and 23.7 μM, respectively. These findings provided new evidence that the stem bark of M. fruticosum is a source of bioactive flavonoid derivatives that are highly valuable for medicinal development.  相似文献   

17.
Polyphenols, widely distributed in the genus Melastoma plants, possess extensive cellular protective effects such as anti-inflammatory, anti-tyrosinase, and anti-obesity, which makes it a potential anti-inflammatory drug or enzyme inhibitor. Therefore, the aim of this study is to screen for the anti-inflammatory and enzyme inhibitory activities of compounds from title plant. Using silica gel, MCI, ODS C18, and Sephadex LH-20 column chromatography, as well as semipreparative HPLC, the extract of Melastoma normale roots was separated. Four new ellagitannins, Whiskey tannin C (1), 1-O-(4-methoxygalloyl)-6-O-galloyl-2,3-O-(S)-hexahydroxydiphenoyl-β-d-glucose (2), 1-O-galloyl-6-O-(3-methoxygalloyl)-2,3-O-(S)-hexahydroxydiphenoyl-β-d-glucose (3), and 1-O-galloyl-6-O-vanilloyl-2,3-O-(S)-hexahydroxydiphenoyl-β-d-glucose (4), along with eight known polyphenols were firstly obtained from this plant. The structures of all isolates were elucidated by HRMS, NMR, and CD analyses. Using lipopolysaccharide (LPS)-stimulated RAW2 64.7 cells, we investigated the anti-inflammatory activities of compounds 1–4, unfortunately, none of them exhibit inhibit nitric oxide (NO) production, their IC50 values are all > 50 μM. Anti-tyrosinase activity assays was done by tyrosinase inhibition activity screening model. Compound 1 showed weak tyrosinase inhibitory activity with IC50 values of 426.02 ± 11.31 μM. Compounds 2–4 displayed moderate tyrosinase inhibitory activities with IC50 values in the range of 124.74 ± 3.12–241.41 ± 6.23 μM. The structure–activity relationships indicate that hydroxylation at C-3′, C-4′, and C-3 in the flavones were key to their anti-tyrosinase activities. The successful isolation and structure identification of ellagitannin provide materials for the screening of anti-inflammatory drugs and enzyme inhibitors, and also contribute to the development and utilization of M. normale.  相似文献   

18.
This work is one of our efforts to discover potent anticancer agents. We modified the most promising derivative of our previous work concerned with the development of VEGFR-2 inhibitor candidates. Thirteen new compounds based on benzoxazole moiety were synthesized and evaluated against three human cancer cell lines, namely, breast cancer (MCF-7), colorectal carcinoma (HCT116), and hepatocellular carcinoma (HepG2). The synthesized compounds were also evaluated against VEGFR-2 kinase activity. The biological testing fallouts showed that compound 8d was more potent than standard sorafenib. Such compound showed IC50 values of 3.43, 2.79, and 2.43 µM against the aforementioned cancer cell lines, respectively, compared to IC50 values of 4.21, 5.30, and 3.40 µM reported for sorafenib. Compound 8d also was found to exert exceptional VEGFR-2 inhibition activity with an IC50 value of 0.0554 μM compared to sorafenib (0.0782 μM). In addition, compound 8h revealed excellent cytotoxic effects with IC50 values of 3.53, 2.94, and 2.76 µM against experienced cell lines, respectively. Furthermore, compounds 8a and 8e were found to inhibit VEGFR-2 kinase activity with IC50 values of 0.0579 and 0.0741 μM, exceeding that of sorafenib. Compound 8d showed a significant apoptotic effect and arrested the HepG2 cells at the pre-G1 phase. In addition, it exerted a significant inhibition for TNF-α (90.54%) and of IL-6 (92.19%) compared to dexamethasone (93.15%). The molecular docking studies showed that the binding pattern of the new compounds to VEGFR-2 kinase was similar to that of sorafenib.  相似文献   

19.
Four new compounds, 5-hydroxy-2′,6′-dimethoxyflavone (4), 5-hydroxy-2′,3′,6′-trimethoxyflavone (5), 5-dihydroxy-6-methoxyflavone (6), and 5,6′-dihydroxy-2′,3′-dimethoxyflavone (7), and three known compounds, 1,3-diphenylpropane-1,3-dione (1), 5-hydroxyflavone (2), and 5-hydroxy-2′-methoxyflavone (3), were isolated from the aerial parts of Hottonia palustris. Their chemical structures were determined through the use of spectral, spectroscopic and crystallographic methods. The quantitative analysis of the compounds (1–7) and the zapotin (ZAP) in methanol (HP1), petroleum (HP6), and two chloroform extracts (HP7 and HP8) were also determined using HPLC-PDA. The biological activity of these compounds and extracts on the oral squamous carcinoma cell (SCC-25) line was investigated by considering their cytotoxic effects using the MTT assay. Subsequently, the most active compounds and extracts were assessed for their effect on DNA biosynthesis. It was found that all tested samples during 48 h treatment of SCC-25 cells induced the DNA biosynthesis-inhibitory activity: compound 1 (IC50, 29.10 ± 1.45 µM), compound 7 (IC50, 40.60 ± 1.65 µM) and extracts ZAP (IC50, 20.33 ± 1.01 µM), HP6 (IC50, 14.90 ± 0.74 µg), HP7 (IC50, 16.70 ± 0.83 µg), and HP1 (IC50, 30.30 ± 1.15 µg). The data suggest that the novel polymethoxyflavones isolated from Hottonia palustris evoke potent DNA biosynthesis inhibitory activity that may be considered in further studies on experimental pharmacotherapy of oral squamous cell carcinoma.  相似文献   

20.
The fungus strain DZ-3 was isolated from twigs of the well-known medicinal plant Eucommia ulmoides Oliver and identified as Aspergillus flavipes. Two new alkaloids, named asperflaloids A and B (1 and 2), together with 10 known compounds (3–12) were obtained from the EtOAc extract of the strain. Interestingly, the alkaloids 1–4 with different frameworks are characterized by the presence of the same anthranilic acid residue. The structures were established by detailed analyses of the spectroscopic data. The absolute configuration of asperflaloids A and B was resolved by quantum chemistry calculation. All compounds were screened for their inhibitions against α-glucosidase and the antioxidant capacities. The results were that compound 3 had an IC50 value of 750.8 μM toward α-glucosidase, and the phenol compounds 7 and 8 exhibited potent antioxidant capacities with IC50 values 14.4 and 27.1 μM respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号