首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The aim of this study is to clarify the effect of doped metal type on CO2 reduction characteristics of TiO2 with NH3 and H2O. Cu and Pd have been selected as dopants for TiO2. In addition, the impact of molar ratio of CO2 to reductants NH3 and H2O has been investigated. A TiO2 photocatalyst was prepared by a sol-gel and dip-coating process, and then doped with Cu or Pd fine particles by using the pulse arc plasma gun method. The prepared Cu/TiO2 film and Pd/TiO2 film were characterized by SEM, EPMA, TEM, STEM, EDX, EDS and EELS. This study also has investigated the performance of CO2 reduction under the illumination condition of Xe lamp with or without ultraviolet (UV) light. As a result, it is revealed that the CO2 reduction performance with Cu/TiO2 under the illumination condition of Xe lamp with UV light is the highest when the molar ratio of CO2/NH3/H2O = 1:1:1 while that without UV light is the highest when the molar ratio of CO2/NH3/H2O = 1:0.5:0.5. It is revealed that the CO2 reduction performance of Pd/TiO2 is the highest for the molar ratio of CO2/NH3/H2O = 1:1:1 no matter the used Xe lamp was with or without UV light. The molar quantity of CO per unit weight of photocatalyst for Cu/TiO2 produced under the illumination condition of Xe lamp with UV light was 10.2 μmol/g, while that for Pd/TiO2 was 5.5 μmol/g. Meanwhile, the molar quantity of CO per unit weight of photocatalyst for Cu/TiO2 produced under the illumination condition of Xe lamp without UV light was 2.5 μmol/g, while that for Pd/TiO2 was 3.5 μmol/g. This study has concluded that Cu/TiO2 is superior to Pd/TiO2 from the viewpoint of the molar quantity of CO per unit weight of photocatalyst as well as the quantum efficiency.  相似文献   

2.
Rising atmospheric levels of carbon dioxide and the depletion of fossil fuel reserves raise serious concerns about the ensuing effects on the global climate and future energy supply. Utilizing the abundant solar energy to convert CO2 into fuels such as methane or methanol could address both problems simultaneously as well as provide a convenient means of energy storage. In this Review, current approaches for the heterogeneous photocatalytic reduction of CO2 on TiO2 and other metal oxide, oxynitride, sulfide, and phosphide semiconductors are presented. Research in this field is focused primarily on the development of novel nanostructured photocatalytic materials and on the investigation of the mechanism of the process, from light absorption through charge separation and transport to CO2 reduction pathways. The measures used to quantify the efficiency of the process are also discussed in detail.  相似文献   

3.
Evidence is provided that in a gas-solid photocatalytic reaction the removal of photogenerated holes from a titania (TiO2) photocatalyst is always detrimental for photocatalytic CO2 reduction. The coupling of the reaction to a sacrificial oxidation reaction hinders or entirely prohibits the formation of CH4 as a reduction product. This agrees with earlier work in which the detrimental effect of oxygen-evolving cocatalysts was demonstrated. Photocatalytic alcohol oxidation or even overall water splitting proceeds in these reaction systems, but carbon-containing products from CO2 reduction are no longer observed. H2 addition is also detrimental, either because it scavenges holes or because it is not an efficient proton donor on TiO2. The results are discussed in light of previously suggested reaction mechanisms for photocatalytic CO2 reduction. The formation of CH4 from CO2 is likely not a linear sequence of reduction steps but includes oxidative elementary steps. Furthermore, new hypotheses on the origin of the required protons are suggested.  相似文献   

4.
As a typical photocatalyst for CO2 reduction, practical applications of TiO2 still suffer from low photocatalytic efficiency and limited visible‐light absorption. Herein, a novel Au‐nanoparticle (NP)‐decorated ordered mesoporous TiO2 (OMT) composite (OMT‐Au) was successfully fabricated, in which Au NPs were uniformly dispersed on the OMT. Due to the surface plasmon resonance (SPR) effect derived from the excited Au NPs, the TiO2 shows high photocatalytic performance for CO2 reduction under visible light. The ordered mesoporous TiO2 exhibits superior material and structure, with a high surface area that offers more catalytically active sites. More importantly, the three‐dimensional transport channels ensure the smooth flow of gas molecules, highly efficient CO2 adsorption, and the fast and steady transmission of hot electrons excited from the Au NPs, which lead to a further improvement in the photocatalytic performance. These results highlight the possibility of improving the photocatalysis for CO2 reduction under visible light by constructing OMT‐based Au‐SPR‐induced photocatalysts.  相似文献   

5.
The transformation of CO2 into fuels and chemicals by photocatalysis is a promising strategy to provide a long‐term solution to mitigating global warming and energy‐supply problems. Achievements in photocatalysis during the last decade have sparked increased interest in using sunlight to reduce CO2. Traditional semiconductors used in photocatalysis (e.g. TiO2) are not suitable for use in natural sunlight and their performance is not sufficient even under UV irradiation. Some two‐dimensional (2D) materials have recently been designed for the catalytic reduction of CO2. These materials still require significant modification, which is a challenge when designing a photocatalytic process. An overarching aim of this Review is to summarize the literature on the photocatalytic conversion of CO2 by various 2D materials in the liquid phase, with special attention given to the development of novel 2D photocatalyst materials to provide a basis for improved materials.  相似文献   

6.
蓝奔月  史海峰 《物理化学学报》2015,30(12):2177-2196
传统化石能源燃烧产生CO2引起的地球变暖和能源短缺已经成为一个严重的全球性问题. 利用太阳光和光催化材料将CO2还原为碳氢燃料, 不仅可以减少空气中CO2浓度, 降低温室效应的影响, 还可以提供碳氢燃料, 缓解能源短缺问题, 因此日益受到各国科学家的高度关注. 本文综述了光催化还原CO2为碳氢燃料的研究进展, 介绍了光催化还原CO2的反应机理, 并对现阶段报道的光催化还原CO2材料体系进行了整理和分类, 包括TiO2光催化材料, ABO3型钙钛矿光催化材料, 尖晶石型光催化材料, 掺杂型光催化材料, 复合光催化材料, V、W、Ge、Ga基光催化材料及石墨烯基光催化材料. 评述了各种材料体系的特点及光催化性能的一些影响因素. 最后对光催化还原CO2的研究前景进行了展望.  相似文献   

7.
《中国化学快报》2022,33(8):3709-3712
Semiconductor-employed photocatalytic CO2 reduction has been regarded as a promising approach for environmental-friendly conversion of CO2 into solar fuels. Herein, TiO2/Cu2O composite nanorods have been successfully fabricated by a facile chemical reduction method and applied for photocatalytic CO2 reduction. The composition and structure characterization indicates that the Cu2O nanoparticles are coupled with TiO2 nanorods with an intimate contact. Under light illumination, all the TiO2/Cu2O composite nanorods enhance the photocatalytic CO2 reduction. In particular, the TiO2/Cu2O-15% sample exhibits the highest CH4 yield (1.35 µmol g-1 h-1) within 4 h irradiation, and it is 3.07 and 15 times higher than that of pristine TiO2 nanorods and Cu2O nanoparticles, respectively. The enhanced photoreduction capability of the TiO2/Cu2O-15% is attributed to the intimate construction of Cu2O nanoparticles on TiO2 nanorods with formed p-n junction to accelerate the separation of photogenerated electron-hole pairs. This work provides a reference for rational design of a p-n heterojunction photocatalyst for CO2 photoreduction.  相似文献   

8.
《中国化学快报》2020,31(10):2774-2778
The rapid recombination of photoinduced electron-hole pairs as well as the deficiency of high-energy carriers restricted the redox ability and products selectivity. Herein, the heterojunction of SnS2-decorated three-dimensional ordered macropores (3DOM)-SrTiO3 catalysts were in-situ constructed to provide transmit channel for high-energy electron transmission. The suitable band edges of SnS2 and SrTiO3 contribute to the Z-scheme transfer of photogenerated carrier. The 3DOM structure of SrTiO3-based catalyst possesses the slow light effect for enhancing light adsorption efficiency, and the surface alkalis strontium is benefit to the boosting adsorption for CO2. The in-situ introduced SnS2 decorated on the macroporous wall surface of 3DOM-SrTiO3 altered the primary product from CO to CH4. The Z-scheme electron transfer from SnS2 combining with the holes in SrTiO3 occurred under full spectrum photoexcitation, which improved the excitation and utilization of photogenerated electrons for CO2 multi-electrons reduction. As a result, (SnS2)3/3DOM-SrTiO3 catalyst exhibits higher activity for photocatalytic CO2 reduction to CH4 compared with single SnS2 or 3DOM-SrTiO3, i.e., its yield and selectivity of CH4 are 12.5 μmol g-1 h-1 and 74.9%, respectively. The present work proposed the theoretical foundation of Z-scheme heterojunction construction for enhancing photocatalytic activity and selectivity for CO2 conversion.  相似文献   

9.
Developing highly efficient and stable photocatalysts for the CO2 reduction reaction (CO2RR) remains a great challenge. We designed a Z-Scheme photocatalyst with N−Cu1−S single-atom electron bridge (denoted as Cu-SAEB), which was used to mediate the CO2RR. The production of CO and O2 over Cu-SAEB is as high as 236.0 and 120.1 μmol g−1 h−1 in the absence of sacrificial agents, respectively, outperforming most previously reported photocatalysts. Notably, the as-designed Cu-SAEB is highly stable throughout 30 reaction cycles, totaling 300 h, owing to the strengthened contact interface of Cu-SAEB, and mediated by the N−Cu1−S atomic structure. Experimental and theoretical calculations indicated that the SAEB greatly promoted the Z-scheme interfacial charge-transport process, thus leading to great enhancement of the photocatalytic CO2RR of Cu-SAEB. This work represents a promising platform for the development of highly efficient and stable photocatalysts that have potential in CO2 conversion applications.  相似文献   

10.
Semiconductor photocatalysis is a process that harnesses light energy in chemical conversions. In particular, its applications to environmental remediation have been intensively investigated. The characteristics of TiO2, the most popular photocatalyst, is briefly described and selected studies on the degradation/conversion of various recalcitrant pollutants using pure and modified TiO2 photocatalysts, which were carried out in this group, are reviewed. Photocatalytic reactions are multi-phasic and take place at interfaces of not only water/TiO2 and air/TiO2 but also solid/TiO2. Examples of photocatalytic reactions of various organic and inorganic substrates that are converted through the photocatalytic oxidation or reduction are introduced. TiO2 has been modified in various ways to improve its photocatalytic activity. Surface modifications of TiO2 that include surface platinization, surface fluorination, and surface charge alteration are discussed and their applications to pollutants degradation are also described in detail.  相似文献   

11.
Yang  Jie  Gao  Ge  Zhu  Zhi  Yu  Xiuna 《Research on Chemical Intermediates》2022,48(6):2313-2323

This study prepared a biochar-based photocatalyst (Co–Al LDH–C) via facile ultrasonic-assisted solvent treatment. The Co–Al LDH–C photocatalyst shows better photocatalytic activity in CO2 reduciton than the pure Co–Al LDH without biochar modification. The Co–Al LDH–C affords a CO generation rate of 29.2 µmol g?1. The enhanced CO2 reduction activity is attributed to the biochar in Co–Al LDH enhanced the light absorption property and separation efficiency of the charge carriers. Additionally, a mechanism insight of Co–Al LDH reduction CO2 is also investigated by a series of characterizations and experiments results. This work offers a new insight for CO2 reduction by waste utilization of biomass and improved the performance of Co–Al LDH, and extends the broad potential application of biochar-based photocatalyst in the photocatalytic conversion from solar to carbon resource.

  相似文献   

12.
Photocatalytic CO2 reduction is a revolutionary approach to solve imminent energy and environmental issues by replicating the ingenuity of nature. The past decade has witnessed an impetus in the rise of two-dimensional (2D) structure materials as advanced nanomaterials to boost photocatalytic activities. In particular, the use of 2D carbon-based materials is deemed as highly favorable, not only as a green material choice, but also due to their exceptional physicochemical and electrical properties. This Review article presents a diverse range of alterations and compositions derived from 2D carbon-based nanomaterials, mainly graphene and graphitic carbon nitride (g-C3N4), which have remarkably ameliorated the photocatalytic CO2 performance. Herein, the rational design of the photocatalyst systems with consideration of the aspect of dimensionality and the resultant heterostructures at the interface are systematically analyzed to elucidate an insightful perspective on this pacey subject. Finally, a conclusion and outlook on the limitations and prospects of the cutting-edge research field are highlighted.  相似文献   

13.
Recently, environmental disruption is proceeding on a global scale through the consumption of huge amounts of fossil fuels and the emission of various chemical substances. However, these substances resist bio-treatment. TiO2 generates electrons and holes by irradiation with light. Most organic micro-pollutants, including dioxins, are decomposed into carbon dioxide and water by the effect of the holes with high oxidative potential. By using such a photocatalytic reaction, various applications are feasible for environmental cleanup. In general, TiO2 powder has been utilized as photocatalyst, although TiO2 powder photocatalyst has several disadvantages: (1) it is difficult to handle, (2) photocatalytic reaction is slow and it takes a lot of time for treatment and (3) it is difficult to apply to plastics and textiles, because the photocatalyst decomposes them. We have developed a photocatalyst suitable for practical use and have developed high-activity photocatalysts such as TiO2 photocatalytic transparent film, photocatalytic silica-gel, apatite-coated TiO2 photocatalyst usable for plastics and textiles, photocatalytic paper, photocatalytic blue charcoal and photocatalytic oxygen scavenger. The application of these high-activity photocatalysts has been studied in deodorization, anti-bacterial, self-cleaning, anti-stain, water treatment, air purification such as photocatalytic decomposition of dioxins and VOC, and NO x removal. Now various photocatalytic articles using these new photocatalyst materials are on the market in Japan. Photocatalytic technology can create many valuable products for environmental use all over the world.  相似文献   

14.
Currently, the excessive consumption of fossil fuels is accompanied by massive emissions of CO2, leading to severe energy shortages and intensified global warming. It is of great significance to develop and use renewable clean energy while reducing the concentration of CO2 in the atmosphere. Photocatalytic technology is a promising strategy for carbon dioxide conversion. Clearly, the achievement of the above goals largely depends on the design and construction of catalysts. This review is mainly focused on the application of 2D materials for photocatalytic CO2 reduction. The contribution of synthetic strategies to their structure and performance is emphasized. Finally, the current challenges, and prospects of 2D materials for photoreduction of CO2 with high efficiency, even for practical applications are discussed. It is hoped that this review can provide some guidance for the rational design, controllable synthesis of 2D materials, and their application for efficient photocatalytic CO2 reduction.  相似文献   

15.
Bi2WO6 powder photocatalyst was prepared using Bi(NO3)3 and Na2WO4 as raw materials by a simple hydrothermal method at 150 °C for 24 h, and then calcined at 300, 400, 500, 600 and 700 °C for 2 h, respectively. The as-prepared samples were characterized with UV-visible diffuse reflectance spectra, fourier transform infrared spectra (FTIR), X-ray diffraction (XRD), scanning electron microscopy (SEM) and N2 adsorption-desorption measurement. The photocatalytic activity of the samples was evaluated using the photocatalytic oxidation of formaldehyde at room temperature under visible light irradiation. It was found that post-treatment temperature obviously influenced the visible-light photocatalytic activity and physical properties of Bi2WO6 powders. At 500 °C, Bi2WO6 powder photocatalyst showed the highest visible-light photocatalytic activity due to the samples with good crystallization and high BET surface area.  相似文献   

16.
The heterojunction structures of In2O3/TiO2, exhibiting visible light photocatalytic efficiency, has been synthesized by utilizing maleic acid as an organic linker to combine In2O3 and Degussa P25 (TiO2) nanoparticles. The prepared nanocomposite has been characterized by FESEM, TEM, XRD and UV?CVisible reflectance spectra. The photocatalytic efficiency of the composite photocatalyst has been investigated based on the decomposition of 2-propanol (IP) in gas phase and 1,4-dichlorobenzene (DCB) in aqueous phase under visible light (??????420?nm) irradiation. The results reveal that the In2O3/TiO2 composite photocatalyst with 7?wt% In2O3 demonstrated 6.3 times of efficiency in evolving CO2 from gaseous IP and 8.7 times of efficiency in removing aqueous DCB in compare with Degussa P25. In this In2O3/TiO2 composite system, TiO2 seems to be the principal photocatalyst whereas the function of In2O3 is to sensitize TiO2 by absorbing visible light (??????420?nm). The extraordinary high photocatalytic efficiency of this composite In2O3/TiO2 under visible light has been explained on the basis of relative energy band positions of the component semiconductors.  相似文献   

17.
Anatase TiO2 films (thickness = 50 nm) were formed in shape of stripes (width = 1.6 mm, interval = 0.4 mm) by gravure printing on commercially available SnO2 coated soda-lime glass substrates (dimension = 300 × 300 mm). Its photocatalytic activity was examined for the gas-phase oxidation of CH3CHO in comparison with a simple TiO2 photocatalyst formed on a silica glass. The patterned TiO2/SnO2 bilayer type photocatalyst showed a high photocatalytic activity in an H2O bearing atmosphere. On the other hand, neither the patterning nor stacking effect was observed for the same reaction under dry conditions. These results could be explained in terms of the reducing potential of the electrons in the conduction band of the SnO2 layer.  相似文献   

18.
The solar-driven photocatalytic reduction of CO2 (CO2RR) into chemical fuels is a promising route to enrich energy supplies and mitigate CO2 emissions. However, low catalytic efficiency and poor selectivity, especially in a pure-water system, hinder the development of photocatalytic CO2RR owing to the lack of effective catalysts. Herein, we report a novel atom-confinement and coordination (ACC) strategy to achieve the synthesis of rare-earth single erbium (Er) atoms supported on carbon nitride nanotubes (Er1/CN-NT) with a tunable dispersion density of single atoms. Er1/CN-NT is a highly efficient and robust photocatalyst that exhibits outstanding CO2RR performance in a pure-water system. Experimental results and density functional theory calculations reveal the crucial role of single Er atoms in promoting photocatalytic CO2RR.  相似文献   

19.
TiO2 has gained tremendous attention as a cutting-edge material for application in photocatalysis. The performance of TiO2 as a photocatalyst depends on various parameters including morphology, surface area, and crystallinity. Although TiO2 has shown good catalytic activity in various catalysis systems, the performance of TiO2 as a photocatalyst is generally limited due to its low conductivity and a wide optical bandgap. Numerous different studies have been devoted to overcome these problems, showing significant improvement in photocatalytic performance. In this study, we summarize the recent progress in the utilization of TiO2 for the photocatalytic hydrogen evolution reaction (HER). Strategies for modulating the properties toward the high photocatalytic activity of TiO2 for HER including structural engineering, compositional engineering, and doping are highlighted and discussed. The advantages and limitations of each modification approach are reviewed. Finally, the remaining obstacles and perspective for the development of TiO2 as photocatalysts toward high efficient HER in the near future are also provided.  相似文献   

20.
SnO2–TiO2/fly ash cenospheres (FAC) were prepared via hydrothermal method and used as an active photocatalyst in a photocatalytic system. Scanning electron microscopy, X‐ray diffraction analysis, UV–Vis diffuse reflectance spectroscopy, Fourier transform infrared spectroscopy and N2 adsorption–desorption measurements were used to determine the structure and optical property of SnO2–TiO2/FAC. Phenol was selected as the model substance for photocatalytic reactions to evaluate catalytic ability. Results showed that the degradation efficiency of phenol by SnO2–TiO2/FAC was 90.7% higher than that decomposed by TiO2/FAC. Increased efficiency could be due to the enhanced synergistic effect of semiconductors and FAC could provide more adsorption sites for the pollutant in the photocatalytic reaction. Furthermore, SnO2–TiO2/FAC composites exhibited excellent photocatalytic stability in four reuse cycles. Radical‐trapping experiments further revealed the dominating functions of holes in the photocatalytic reaction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号