首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Two new Schiff base ligands (L1, L2) have been prepared from the reaction of 2,6-diacetylpyridine and 2-pyridinecarboxyaldehyde with 4-amino-2,3-dimethyl-1-phenyl-3-pyrozolin-5-on, and their Co(II), Cu(II), Ni(II), Mn(II), and Cr(III) metal complexes have also been prepared. The complexes are formed by coordination of N and O atoms of the ligands. Their structures were characterized by physico-chemical and spectroscopic methods. The analytical data shows that the metal to ligand ratio in the Schiff base complexes is 1:2. The Schiff base ligands and all complexes were evaluated for their in vitro antibacterial and antifungal activities by the disc diffusion method. In addition, the genotoxic properties of the ligands were studied.  相似文献   

2.
A novel Schiff base compound was synthesized, and its complexation properties with Fe(III) and Cr(III) were investigated. Tripodal ligand was synthesized by the reaction of s‐triazine and 4‐hydroxybenzaldehyde. Then a Schiff base involving 8‐hydroxyquinoline was synthesized by the reaction of 5‐aminomethyl‐8‐hydroxyquinoline ( QN ) and 2,4,6‐tris(p‐formylphenoxy)‐1,3,5‐triazine ( TRIPOD ) in methanol/chloroform media. The obtained Schiff base ( QN-TRIPOD ) was then reacted with four trinuclear Fe(III) and Cr(III) complexes including tetradentate Schiff bases N ,N ′‐bis(salicylidene)ethylenediamine (salenH2)/bis(salicylidene)‐o‐phenylenediamine (SalophenH2). The synthesized ligand and complexes were characterized by means of elemental analysis carrying out 1H NMR, FTIR spectroscopy, thermal analyses, and magnetic susceptibility measurements. Finally, metal ratios of the prepared complexes were determined by using atomic adsorption spectrometry.  相似文献   

3.
In this study, firstly, two single substitute novel ligands have been synthesized by reacting melamine with 3,4,-dihydroxybenzaldeyhde or 4-carboxybenzaldehyde. Then, eight new mono nuclear single substitute [Salen/Salophen Fe(III) and Cr(III)] complexes have been synthesized by reacting the ligands [2-(3,4-dihydroxybenzimino)-4,6-diamimo-1,3,5-triazine and 2-(4-carboxybenzimino)-4,6-diamimo-1,3,5-triazine)] with tetradentate Schiff bases N,N′-bis(salicylidene)ethylenediamine-(salenH2) or bis(salicylidene)-o-phenylenediamine-(salophen H2). And then, all ligands and complexes have been characterized by means of elementel analysis, FT-IR spectroscopy, 1H NMR, LC–MS, thermal analyses and magnetic suscebtibility measurements. Finally, metal ratios of the prepared complexes were determined using AAS. The complexes have also been characterized as disorted octahedral low-spin Fe(III) and Cr(III) bridged by catechol and COO? groups.  相似文献   

4.
New Schiff base ligand (H2L, 1,2‐bis[(2‐(2‐hydroxyphenylimino)‐methyl)phenoxy]ethane) came from condensation reaction of bisaldehyde and 2‐aminophenol was synthesized in a molar ratio 1:2. Metal complexes and the ligand were completely discussed with spectroscopic and theoretical mechanism. The complexes with Fe(III), Cr(III), Mn(II), Co(II), Cu(II), Ni(II), Th(IV) and Zn(II) have been discussed and characterized by elemental analyses, molar conductance, IR, mass spectroscopy, thermal, magnetic measurements, and 1H NMR. The results proved that the Schiff base was a divalent anion with hexadentate O4N2 donors came from the etheric oxygens (O1, O2), azomethine nitrogens (N1, N2) and deprotonated phenolic oxygens (O3, O4). Density Functional Theory using (B3LYP/6‐31G*) level of theory were implemented to predict molecular geometry, Mulliken atomic energetic and charges of the ligand and complexes. The calculation display that complexes had weak field ligand. The binding energy ranged from 650.5 to 1499.0 kcal/mol for Mn(II) and Th(IV) complexes, respectively. The biological behavior of the Schiff base ligand and its metal complexes were displayed against bacteria and fungi organisms. Fe(III) complex gave remarkable biological activity in comparison with the parent bis Schiff base.  相似文献   

5.
Four new trinuclear Fe(III) and Cr(III) complexes involving tetradenta Schiff bases N,N′-bis(salicylidene)ethylenediamine-(salenH2) or bis(salicylidene)-o-phenylenediamine-(saloph H2) with 2,4,6-tris(4-nitrophenylimino-4′-formylphenoxy)-1,3,5-triazine (TNPI-TRIPOD) have been synthesized and characterized by means of elemental analysis carrying out 1H-NMR., IR spectroscopy, thermal analyses and magnetic susceptibility measurements. The complexes can also be characterized as high-spin distorted octahedral Fe(III) and Cr(III) bridged by nitro. The nitro play a role as bridges for weak anti-ferromagnetic intramolecular exchange.  相似文献   

6.
Abstract

We aim to study magnetic and thermal behaviors of some melamine cored macromolecular Schiff base complexes. In this context, tripodal ligands were synthesized by reacting melamine with 4-carboxybenzaldehyde or 4-hydroxybenzaldehyde. Then, 16 new trinuclear Fe(III), Cr(III), Mn(III), and Al(III) complexes were synthesized by reacting the ligands [tris-(4-carboxybenzimino)-1,3,5-triazine) or tris-(4-hydroxybenzimino)-1,3,5-triazine)] with pentadentate Schiff bases N,N′-bis(1-hydroxy-2-benzyliden)-1,7-diamino-4-azaheptane or N,N′-bis(salicylidene)pyridine-2,6-diamine. Later, ligands and complexes were characterized by means of elemental analysis, infrared spectroscopy, 1H NMR, liquid chromatography–mass spectrometry, thermal analyses, and magnetic susceptibility measurements. Finally, metal ratios of the prepared complexes were determined by using atomic adsorption spectrometry. The complexes were also characterized as distorted octahedral high-spin d 3 (S = 3 × 1/2) Cr(III), high-spin d 5 (S = 5 × 1/2) Fe(III), low-spin d 4 (S = 2 × 1/2) Mn(III), and diamagnetic Al(III) bridged by ?OH group of COO? or OH group of phenol.  相似文献   

7.
M.Akbar Ali  R.N. Bose 《Polyhedron》1984,3(5):517-522
New nickel(II), copper(II), cobalt(III) and rohdium(III) complexes of two Schiff base ligands formed by condensation of furfural and benzil with S-benzyldithiocarbazate have been synthesized and characterized by elemental analysis and magnetic and spectroscopic measurements. The nickel(II) complexes, Ni(NS)2 and Ni(ONS)2 (NS and ONS stand for the uninegatively charged furfural and benzil Schiff bases, respectively) are square-planar and octahedral, respectively. The Cu(NS)Cl complex is paramagnetic with a magnetic moment fo 1.73 B.M. A halogen-bridged dimeric structure is proposed for this complex. The copper(II) complex, Cu(ONS)Cl is diamagnetic, suggesting strong antiferromagnetic interactions between a pair of copper(II) ions in a thiolo sulphur-bridged dimeric or polymeric structure. Cobalt(II) ions are oxidized in the presence of the Schiff bases with the concomitant formation of cobalt(III) complexes of empirical formulae, Co(NS)3, Co(ONS)2ClO4 and Co(ONS)2Cl, respectively, which are spin-paired and octahedral. The rhodium(III) complex of the furfural Schiff base, Rh(NS)2Cl is tentatively assigned a halogen-bridged dimeric structre.  相似文献   

8.
Four new trinuclear Fe(III) and Cr(III) complexes involving tetradentate Schiff bases N,N′-bis(salicylidene)ethylenediamine-(salenH2) or bis(salicylidene)-o-phenylenediamine-(salophenH2) with 2,4,6-tris(3,4-dihydroxybenzimino)-1,3,5-triazine have been synthesized and characterized by means of elemental analysis, 1H N.M.R., FT-IR spectroscopy, thermal analyses and magnetic susceptibility measurements. The complexes have also been characterized as low-spin distorted octahedral Fe(III) and Cr(III) bridged by catechol group.  相似文献   

9.
《Solid State Sciences》1999,1(2-3):119-131
Three Cu(II) complexes of N,N′-bis-(salicylidene)-1,3-diiminopropane (1), N,N′-bis-(salicylidene)-1,3-diimino-2,2-dimethylpropane (2), and N,N′-bis-(salicylidene)-1,5-diiminopentane (3) have been prepared and characterized by X-ray diffraction. All of the three complexes are four coordinated with Cu(II) in a tetrahedrally distorted square-planar geometry to two imine N atoms and two phenolate O atoms. Both 1 and 2 are monomeric with a 6-6-6 chelate ring structure and display the 2N2O donor atoms in a normal, tetradentate “cis” configuration. However, in 3 two Cu(II) ions coordinate with bis-bidentate Schiff-base ligands, such that the Cu atoms are bridged by the two ligands; about each Cu atom, the arrangement of the iminophenolate groups is trans. The CuN1O1 and CuN2O2 planes intersect to form dihedral angles of 24.7° and 34.8° for 1 and 2, respectively, while the dihedral angle of two bidentate chelate planes of 3 is 40.5°.  相似文献   

10.
Biologically active triazole Schiff bases ( L 1  L 3 ) derived from the reaction of 3‐amino‐1,2,4‐triazole with chloro‐, bromo‐ and nitro‐ substituted salicylaldehydes and their Zn(II) complexes (1–3) have been synthesized and characterized by their physical, spectral and analytical data. Triazole Schiff bases potentially act as tridentate ligands and coordinate with the Zn(II) metal atom through salicylidene‐O, azomethine‐N and triazole‐N. The complexes have the general formula [M(L‐H)2], where M = zinc(II) and L = ( L 1 – L 3 ), and observe an octahedral geometry. The Schiff bases and their Zn(II) complexes have been screened for in‐vitro antibacterial, antifungal and brine shrimp bioassay. The biological activity data show the Zn(II) complexes to be more potent antibacterial and antifungal than the parent simple Schiff bases. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

11.

Heterobi- and tri-nuclear complexes [LMM'Cl] and [(LM) 2 M'](M=Ni or Cu and M'=Mn, Fe or Co) have been synthesised. The heteronuclear complexes were prepared by stepwise reactions using two mononuclear Ni(II) and Cu(II) complexes of the general formula [HLM]·1/2H 2 O, as ligands towards the metal ions, Mn(II), Fe(III) and Co(II). The asymmetrical pentadentate (N 2 O 3 ) Schiff-base ligands used were prepared by condensing acetoacetylphenol and ethylenediamine, molar ratio 1 1, to yield a half-unit compound which was further condensed with either salicylaldehyde or naphthaldehyde to yield the ligands H 3 L 1 and H 3 L 2 which possess two dissimilar coordination sites, an inner four-coordinate N 2 O 2 donor set and an outer three-coordinated O 2 O set. 1 H NMR and IR spectra indicate that the Ni(II) and Cu(II) ions are bonded to the inner N 2 O 2 sites of the ligands leaving their outer O 2 O sites vacant for further coordination. Different types of products were obtained according to the type of metal ion. These products differ in stoichiometry according to the type of ligand in the parent compound. Electronic spectra and magnetic moments indicate that the structures of the parent Ni(II) and Cu(II) complexes are square-planar while the geometry around Fe(III), Mn(II) and Co(II) in their products are octahedral as elucidated from IR, UV-visible, ESR, 1 H NMR, mass spectrometry and magnetic moments.  相似文献   

12.
Two new square pyramidal iron(III)-complexes of ‘salen’-type Schiff base ligands containing 4-substituted long alkoxy arms on the aromatic rings, [Fe(4-C16H33O)2salcn)]Cl and [Fe(4-C16H33O)2salophen)]Cl {salcn = N,N?-cyclohexanebis(salicylideneiminato) and salophen = N,N?-phenylenebis(salicylideneiminato)}, have been successfully synthesised, and their mesomorphic property investigated. The ligands and complexes were characterised by elemental analyses, UV–Vis, FT-IR, ESI–MS, 1H and 13C NMR (for ligands only). The phase behaviour of the iron(III) complexes were ascertained by differential scanning calorimetry, polarising optical microscopy and variable temperature PXRD study. Ligands are non-mesomorphic, however, mesomorphism got induced upon complexation with the iron(III) centre. X-ray diffraction study revealed a layer-like arrangement of the five coordinated mesomorphic iron(III) complexes. The mesophase is stable over a wide range of temperature. The density functional theory calculations were carried out using Gaussian 09 program at B3LYP level using unrestricted 6–31G (d, p) basis set to obtain the optimised geometry of the iron(III) complexes.  相似文献   

13.
New cobalt(II), copper(II) and zinc(II) complexes of Schiff base derived from D,L ‐selenomethionine and salicylaldehyde were synthesized and characterized by elemental analysis, IR, electronic spectra, conductance measurements, magnetic measurements and biological activity. The analytical data showed that the Schiff base ligand acts as tridentate towards divalent metal ions (cobalt, copper, zinc) via the azomethine‐N, carboxylate oxygen and phenolato oxygen by a stoichiometric reaction of M:L (1:1) to form metal complexes [ML(H2O)], where L is the Schiff base ligand derived from D,L ‐selenomethionine and salicylaldehyde and M = Co(II), Cu(II) and Zn(II). 1H NMR spectral data of the ligand and Zn(II) complex agree with proposed structures. The conductivity values between 12.87 and 15.63 S cm2 mol?1 in DMF imply the presence of non‐electrolyte species. Antibacterial and antifungal results indicate that the metal complexes are more active than the ligand. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

14.
Two novel Schiff base ligands (La and Lb) were prepared from the condensation of quinoline 2‐aldehyde with 2‐aminopyridine (ligand La) and from the condensation of oxamide with furfural (ligand Lb). Mixed ligand complexes of the type M+2La/b Lc were prepared, where (La and Lb) the primary ligands and Lc was 2,6‐pyridinedicarboxylic acid as secondary ligand. Metal ions used were Fe(II), Co(II), Ni(II) and Zn(II) for mixed ligands La Lc and Fe(II), Co(II), Ni(II), Cu(II), Hg(II) and Zn(II) for LbLc mixed ligands. La and Lb Schiff base ligands were both characterized using elemental analyses, molar conductance, IR, 1H and 13C NMR. Mass spectra for Lb, [Zn(La)LcCl]Cl and [Cu(Lb)LcCl]Cl were also studied. ESR spectrum of the [Cu(Lb) LcCl]Cl complex was also recorded The metal complexes were synthesized and characterized using elemental analyses, spectroscopic (IR, 1H NMR, UV‐visible, diffused reflectance), molar conductance, magnetic moment and thermal studies. The IR and 1H NMR spectral data revealed that 2,6‐pyridinedicarboxalic acid ligand coordinated to the metal ions via pyridyl N and carboxylate O without proton displacement. In addition, the IR data showed that La and Lb ligands behaved as neutral bidentate ligands with N2 donation sites (quinoline N and azomethine N for La and two azomethine N for Lb). Based on spectroscopic studies, an octahedral geometry was proposed for the complexes. The thermal stability and degradation of the metal complexes were investigated by thermogravimetric analysis. The binding modes and affinities of La, Lb and Zn(II) complexes towards receptors of crystal structure of E. coli (PDB ID: 3 t88) and mutant oxidoreductase of breast cancer (PDB ID: 3 hb5) receptors were also studied. The antimicrobial activity against two species of Gram positive, Gram negative bacteria and fungi were tested for the Schiff base ligands, 2,6‐pyridinedicarboxylic acid and the mixed ligand complexes and revealed that the synthesized mixed ligand complexes exhibited higher antimicrobial activity than their free Schiff base ligands.  相似文献   

15.
Salicylidene Schiff base chelates (R,R)‐(–)‐N,N′‐bis(3,5‐di‐tert‐butylsalicylidene)‐1,2‐cyclohexanediaminomanganese(III) chloride, (R,R)‐(–)‐N,N′‐bis(3,5‐di‐tert‐butylsalicylidene)‐1,2‐cyclohexanediaminocobalt(II), N,N′‐bis(salicylidene)‐ethylenediaminocobalt(II), N,N′‐bis(salicylidene)ethylenediaminonickel(II), and N,N′‐bis(salicylidene)ethylenediaminoaquacobalt(II), as well as (R,R)‐(–)‐N,N′‐bis(3,5‐di‐tert‐butylsalicylidene)1,2‐cyclohexanediamine, were kinetically examined as antioxidants in the scavenging of tert‐butylperoxyl radical (tert‐butylOO?). Absolute rate constants and corresponding Arrhenius parameters were determined for reactions of tert‐butylOO? with these chelates in the temperature range ?52.5 to ?11°C. High reactivity of tert‐butylOO? with Mn(III) and Co(II) salicylidene Schiff base chelates was established using a kinetic electron paramagnetic resonance method. These salicylidene Schiff base chelates react in a 1:1 stoichiometric fashion with tert‐butylOO? without free radical formation. Ultraviolet–visible spectrophotometry and differential pulse voltammetry established that the rapid removal rate of tert‐butylOO? by these chelates is the result of Mn(III) oxidation to Mn(IV) and Co(II) oxidation to Co(III) by tert‐butylOO?. It is concluded that removal of alkylperoxyl radical by Mn(III) and Co(II) salicylidene Schiff base chelates may partially account for their biological activities. © 2007 Wiley Periodicals, Inc. Int J Chem Kinet 39: 431–439, 2007  相似文献   

16.
2,6-Diacetylpyridine bis(benzenesulfonohydrazide) Schiff bases (L1, L2 and L3) and their Cu(II) complexes of the general formula [CuL·H2O] were synthesized and characterized by various spectroscopic techniques. The crystal structure of [CuL3·(py)]·py was investigated by single crystal X-ray structure analysis. The Cu(II) cation has near square pyramidal, penta-coordinate geometry. The binegatively charged tetradentate Schiff base is asymmetrically coordinated to the Cu(II) ion via the pyridine N atom, the azomethine N atom, the sulfonyl O atom and the deprotonated hydrazine N atom. There is a pyridine molecule apically coordinated to the Cu(II) ion. All the Schiff bases and their copper(II) complexes were screened by the disc diffusion method against multi-drug resistant (MDR) gram-negative and gram-positive bacteria. The minimum inhibitory concentration (MIC) values were also determined. These results show that the antibacterial activity of the Schiff bases against Methicillin-resistant Staphylococcus aureus (MRSA) is enhanced when they are chelated with the copper(II) ion.  相似文献   

17.
Four Schiff base ligands, salabza-H2 = N,N′-bis(salicylidene)-2-aminobenzylamine, were synthesized by condensation of one mole of 2-aminobenzylamine and two moles of salicylaldehyde and/or two moles of substituted salicylaldehyde (5-OMe, 5-Br, 5-NO2). All the four Schiff bases and their Mn(II), Co(II), Cu(II) and Zn(II) complexes are characterized by UV-Vis, FT-IR, 1H NMR spectroscopy, mass spectrometry and elemental analysis. The formation constants and the Gibbs free energies were measured spectrophotometrically for 1:1 complexes in methanol in constant ionic strength (I = 0.1 mol dm−3 NaClO4) and at 25°C. The data refinement was carried out with the SQUAD program. The trend of formation constants of H2L1 with M(II) follows the order: Mn(II) (3.97) < Zn(II) (4.30) < Co(II) (4.89) < Cu(II) (5.73)  相似文献   

18.
Four new trinuclear Fe(III) and Cr(III) complexes involving tetradentate Schiff bases N, N′-bis(salicylidene)ethylenediamine-(salenH2) or bis(salicylidene)-o-phenylenediamine-(salophen H2) with 2,4,6-tris(4-carboxybenzimino)-1,3,5-triazine have been synthesized and characterized by means of elemental analysis, 1H NMR, FT-IR spectroscopy, LC-MS, thermal analyses and magnetic susceptibility measurements. The complexes have also been characterized as low-spin distorted octahedral Fe(III) and Cr(III) bridged by COO? group.  相似文献   

19.
Novel Schiff base ligand based on the condensation of 4,6-diacetyl resorcinol with 2-amino-4-methylthiazole in addition to its metal complexes with Cr (III), Mn (II), Fe (III), Co (II), Ni (II), Cu (II), Zn (II) and Cd (II) ions have been synthesized. The structure, electronic properties, and thermal behaviour of Schiff base and its metal complexes have been studied by elemental analysis, mass, 1H NMR, IR spectra, thermal analysis, and theoretically by density function theory. The ligand acted as mononegative bidentate (NO) ligand and all complexes showed octahedral geometry except Cu (II) showed tetrahedral geometry as indicated from the spectral and magnetic studies. The Cu (II), Zn (II) and Cd (II) complexes were non electrolytes while the rest of the complexes were electrolytes. The antibacterial plus anticancer activities of the parent Schiff base and its metal complexes were screened. In addition, the molecular docking study was performed to explore the possible ways for binding to Crystal Structure of Human Astrovirus capsid protein (5ibv) receptor.  相似文献   

20.
Salicylaldehyde or 5-bromosalicylaldehyde reacted with 2,3-diaminophenol in absolute EtOH in a 2:1 molar ratio to give new unsymmetrical Schiff bases (H2L). The bases were used as ligands to coordinate Mn(III), Ni(II) and Cu(II) chlorides leading to [MnIIIClL] · EtOH and [MIIL] or [MIIL] · 2H2O (M = Ni or Cu) complexes. Their structures were determined using mass spectroscopy, IR, u.v.–vis and 1H-n.m.r. The cyclic voltammetry in acetonitrile showed irreversible waves for both ligands. Under the same experimental conditions, the complexes exhibited mainly the non-reversible reduction of the Ni(II) or Cu(II) ion to Ni(0) or Cu(0), while the reduction of Mn(III) to Mn(II) was found to be a quite reversible phenomenon.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号