首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The aim of the study was to assess the effect of soil type and the application of fertilizer composed of ashes from biomass combustion to potatoes on selected physicochemical, rheological, and thermal properties of potato starches isolated by using the laboratory method. Potatoes were grown in Haplic Luvisol (HL) and Gleyic Chernozem (GC) soil and fertilized with different doses of biomass combustion ash (D1–D6) with different mineral contents. The thermodynamic characteristics of gelatinization and retrogradation were identified by DSC. The analyses of rheological properties included the determination of the gelatinization characteristics by using the RVA method, flow curves, and assessment of the viscoelastic properties of starch gels. It was found that the starches tested contained from 24.7 to 29.7 g/100 g d.m. amylose, and the clarity of 1% starch pastes ranged from 59% to 68%. The gelatinization characteristics that were determined showed statistically significant differences between the starches analyzed in terms of the tested factors. The value of maximum viscosity and final viscosity varied, respectively, in the range of 2017–2404 mPa·s and 2811–3112 mPa·s, respectively. The samples of the potato starches studied showed a non-Newtonian flow, shear thinning, and the phenomenon of thixotropy. After cooling, the starch gels showed different viscoelastic properties, all of which were weak gels (tan δ = G″/G′ > 0.1).  相似文献   

2.
Tapioca and potato starches were used to investigate the effect of heat–moisture treatment (HMT; 95–96 °C, 0–60 min, 1–6 iterations) on gelatinization properties, swelling power (SP), solubility and pasting properties. Tapioca starch had similar content and degree of polymerization of amylose, but a higher amylopectin short/long chain ratio, to potato starch. After HMT, the gelatinization temperature range was narrowed for tapioca starch, but was widened for potato starch. Decreases in SP and solubility were less for tapioca than potato starches, coinciding with a progressive shift to the moderate-swelling pasting profile for tapioca but a drastic change to the restricted-swelling profile for potato. Moreover, decreasing extents of SP and maximum viscosity for HMT tapioca starch were, respectively, in the range of 47–63% and 0–36%, and those of HMT potato starch were 89–92% and 63–94%. These findings indicate that the granule expansion and viscosity change of starch during gelatinization can be tailored stepwise by altering the HMT holding time and iteration.  相似文献   

3.
The objective of this study was to obtain and characterize flours and starches from the avocado seeds of Hass and landrace cultivars. The morphological, physical-chemical, structural, thermal and rheological characteristics were evaluated. The flour yield of the Hass and landrace cultivars was 41.56 to 46.86% (w/w), while for starch, it was 35.47 to 39.57% (w/w) (cv. Hass and landrace, respectively). Scanning electron microscopy (SEM) revealed the presence of oval starch granules and other particles in flour, in contrast to flours, starches showed lower ash, proteins and lipids content. However, the amylose content was higher in starches (42.25–48.2%). Flours showed a higher gelatinization temperature (Tp = 73.17–73.62 °C), and their starches presented greater gelatinization enthalpy (∆Hgel = 11.82–13.43 J/g). All samples showed a B-type diffraction pattern, and the crystallinity was higher in the flours. The rheological analysis (flow curves and viscoelastic tests) evidenced a pseudoplastic (n = 0.28–0.36) behavior in all samples analyzed, but the consistency index (k) was higher in starches. In general, the flours and starches from avocado seeds presented interesting proximal, thermal and functional properties for possible application in food systems, and these findings could contribute to the revaluation of this by-product.  相似文献   

4.
Heat-moisture treatment (HMT) changed the morphology and the degree of molecular ordering in lotus rhizome (Nelumbo nucifera Gaertn.) starch granules slightly, leading to some detectable cavities or holes near hilum, weaker birefringence and granule agglomeration, accompanied with modified XRD pattern from C- to A-type starch and lower relative crystallinity, particularly for high moisture HMT modification. In contrast, annealing (ANN) showed less impact on granule morphology, XRD pattern and relative crystallinity. All hydrothermal treatment decreased the resistant starch (from about 27.7–35.4% to 2.7–20%), increased the damage starch (from about 0.5–1.6% to 2.4–23.6%) and modified the functional and pasting properties of lotus rhizome starch pronouncedly. An increase in gelatinization temperature but a decrease in transition enthalpy occurred after hydrothermal modification, particularly for hydrothermal modification involved with HMT. HMT-modified starch also showed higher pasting temperature, less pronounced peak viscosity, leading to less significant thixotropic behavior and retrogradation during pasting-gelation process. However, single ANN treatment imparts a higher tendency of retrogradation as compared to native starch. For dual hydrothermally modified samples, the functional properties generally resembled to the behavior of single HMT-modified samples, indicating the pre- or post-ANN modification had less impact on the properties HMT modified lotus rhizome starch.  相似文献   

5.
This study was planned to explore the locally available natural sources of gum hydrocolloids as a natural modifier of different starch properties. Corn (CS), sweet potato (SPS), and Turkish bean (TBS) starches were mixed with locally extracted native or acetylated cactus (CG) and acacia (AG) gums at 2 and 5% replacement levels. The binary mixtures (starch–gums) were prepared in water, freeze dried, ground to powder, and stored airtight. A rapid viscoanalyzer (RVA), differential scanning calorimeter (DSC), texture analyzer, and dynamic rheometer were used to explore their pasting, thermal, textural, and rheological properties. The presence of acetylated AG or CG increased the final viscosity (FV) in all three starches when compared to starch pastes containing native gums. Plain SPS dispersion had a higher pasting temperature (PT) than CS and TBS. The addition of AG or CG increased the PT of CS, SPS, and TBS. The thermograms revealed the overall enthalpy change of the starch and gum blends: TBS > SPS > CS. The peak temperature (Tp) of starches increased with increasing gum concentration from 2 to 5% for both AG and CG native and modified gums. When compared to the control gels, the addition of 2% CG, either native or modified, reduced the syneresis of starch gels. However, further addition (5% CG) increased the gels’ syneresis. Furthermore, the syneresis for the first cycle on the fourth day was higher than the second cycle on the eighth day for all starches. The addition of native and acetylated CG reduced the hardness of starch gels at all concentrations tested. All of the starch dispersions had higher G′ than G″ values, indicating that they were more elastic and less viscous with or without the gums. The apparent viscosity of all starch gels decreased as shear was increased, with profiles indicating time-dependent thixotropic behavior. All of the starch gels, with or without gums, showed a non-Newtonian shear thinning trend in the shear stress vs. shear rate graphs. The addition of acetylated CG gum to CS resulted in a higher activation energy (Ea) than the native counterparts and the control. More specifically, starch gels with a higher gum concentration (5%) provided greater Ea than their native counterparts.  相似文献   

6.
C-type starches with different proportions of A- and B-type crystallinities have different intensities and crystallinities of X-ray diffraction peaks. In this study, the intensities and crystallinities of X-ray diffraction peaks, molecular components and heat properties of C-type starches were investigated in seven sweet potato varieties, and their relationships were analyzed. The intensity and crystallinity of a diffraction peak at 5.6° were significantly positively correlated to the DP6-12 branch-chains of amylopectin and significantly negatively correlated to the true amylose content (TAC) determined by concanavalin A precipitation, gelatinization temperature, gelatinization enthalpy, water solubility at 95 °C, and pasting temperature. The intensity of diffraction peaks at 15° and 23° were significantly positively correlated to the gelatinization temperature and pasting temperature and significantly negatively correlated to the pasting peak viscosity. The significantly positive relationships were detected between the crystallinity of a diffraction peak at 15° and the DP13-24 branch-chains of amylopectin, gelatinization conclusion temperature and water solubility, between the crystallinity of diffraction peak at 17–18° and the TAC, gelatinization onset temperature, water solubility and pasting temperature, between the crystallinity of a diffraction peak at 23° and the gelatinization conclusion temperature and pasting peak time, and between the total crystallinity and the TAC, gelatinization conclusion temperature, water solubility and pasting temperature. The score plot of principle component analysis showed that the molecular components and heat property parameters could differentiate the C-type starches and agreed with their characteristics of X-ray diffraction peaks. This study provides some references for the utilizations of C-type starches.  相似文献   

7.
Starch is the most abundant carbohydrate in legumes (22–45 g/100 g), with distinctive properties such as high amylose and resistant starch content, longer branch chains of amylopectin, and a C-type pattern arrangement in the granules. The present study concentrated on the investigation of hydrolyzed faba bean starch using acid, assisted by microwave energy, to obtain a possible food-grade coating material. For evaluation, the physicochemical, morphological, pasting, and structural properties were analyzed. Hydrolyzed starches developed by microwave energy in an acid medium had low viscosity, high solubility indexes, diverse amylose contents, resistant starch, and desirable thermal and structural properties to be used as a coating material. The severe conditions (moisture, 40%; pure hydrochloric acid, 4 mL/100 mL; time, 60 s; and power level, 6) of microwave-treated starches resulted in low viscosity values, high amylose content and high solubility, as well as high absorption indexes, and reducing sugars. These hydrolyzed starches have the potential to produce matrices with thermo-protectants to formulate prebiotic/probiotic (symbiotic) combinations and amylose-based inclusion complexes for functional compound delivery. This emergent technology, a dry hydrolysis route, uses much less energy consumption in a shorter reaction time and without effluents to the environment compared to conventional hydrolysis.  相似文献   

8.
Three sweet potato varieties with purple-, yellow-, and white-fleshed root tubers were planted in four growing locations. Starches were isolated from their root tubers, their physicochemical properties (size, iodine absorption, amylose content, crystalline structure, ordered degree, lamellar thickness, swelling power, water solubility, and pasting, thermal and digestion properties) were determined to investigate the effects of variety and growing location on starch properties in sweet potato. The results showed that granule size (D[4,3]) ranged from 12.1 to 18.2 μm, the iodine absorption parameters varied from 0.260 to 0.361 for OD620, from 0.243 to 0.326 for OD680 and from 1.128 to 1.252 for OD620/550, and amylose content varied from 16.4% to 21.2% among starches from three varieties and four growing locations. Starches exhibited C-type X-ray diffraction patterns, and had ordered degrees from 0.634 to 0.726 and lamellar thicknesses from 9.72 to 10.21 nm. Starches had significantly different swelling powers, water solubilities, pasting viscosities, and thermal properties. Native starches had rapidly digestible starch (RDS) from 2.2% to 10.9% and resistant starch (RS) from 58.2% to 89.1%, and gelatinized starches had RDS from 70.5% to 81.4% and RS from 10.8% to 23.3%. Two-way ANOVA analysis showed that starch physicochemical properties were affected significantly by variety, growing location, and their interaction in sweet potato.  相似文献   

9.
Resistant starch (RS) is widely used in the food industry because of its ability to regulate and protect the small intestine, but their distinct effects on the structural and functional properties of waxy and non-waxy proso millet starches are not completely understood. The crystalline structure and physicochemical properties of waxy and non-waxy proso millets’ starch samples were analyzed after heat-moisture treatment (HMT). The analysis revealed significant differences between the RS of waxy and non-waxy proso millets. The crystal type of proso millets’ starch changed from type A to type B + V. The relative crystallinity of the RS of waxy proso millet was better than that of non-waxy proso millet. The gelatinization temperature and thermal stability of RS significantly increased, and the pasting temperature (PTM) of the RS of waxy proso millet was the highest. The water solubility and swelling power of the RS in proso millet decreased, and the viscoelasticity improved. The correlation between the short-range ordered structure of RS and ΔH, and gelatinization properties has a stronger correlation. This study provides practical information for improving the nutritional benefits of waxy and non-waxy proso millet in food applications.  相似文献   

10.
The present study aimed to determine changes in the properties of starch triggered by its long-lasting (1, 2, 4, 7, 10, or 14 days) retention with citric acid (5 g/100 g) at a temperature of 40 °C. The starch citrates obtained under laboratory conditions had a low degree of substitution, as confirmed via NMR and HPSEC analyses. The prolonging time of starch retention with citric acid at 40 °C contributed to its increased esterification degree (0.05–0.11 g/100 g), swelling power (30–38 g/g), and solubility in water (19–35%) as well as to decreased viscosity of the starch pastes. Starch heating with citric acid under the applied laboratory conditions did not affect the course of DSC thermal characteristics of starch pasting. The low-substituted starch citrates exhibited approximately 15% resistance to amylolysis.  相似文献   

11.
Sweet potato is a root tuber crop and an important starch source. There are hundreds of sweet potato varieties planted widely in the world. Starches from varieties with different genotype types and originating from different countries have not been compared for their physicochemical properties. In the research, starches from 44 sweet potato varieties originating from 15 countries but planted in the same growing conditions were investigated for their physicochemical properties to reveal the similarities and differences in varieties. The results showed that the 44 starches had granule size (D[4,3]) from 8.01 to 15.30 μm. Starches had different iodine absorption properties with OD680 from 0.259 to 0.382 and OD620/550 from 1.142 to 1.237. The 44 starches had apparent amylose content from 19.2% to 29.2% and true amylose content from 14.2% to 20.2%. The starches exhibited A-, CA-, CC-, or CB-type X-ray diffraction patterns. The thermograms of 44 starches exhibited one-, two-, or three-peak curves, leading to a significantly different gelatinization temperature range from 13.1 to 29.2 °C. The significantly different starch properties divide the 44 sweet potato varieties into different groups due to their different genotype backgrounds. The research offers references for the utilization of sweet potato germplasm.  相似文献   

12.
Fiber-enriched food has numerous health benefits. This study develops functional fiber-enriched pasta (FEP) by partially substituting wheat flour for alcohol-insoluble residue prepared from potato processing byproducts (AIR-PPB) at various particle sizes (PS). The independent variables’ effects, AIR-PPB at 2–15% substitution levels, and PS 40–250 µm were investigated in terms of chemical, cooking, thermal, and sensory properties. AIR-PPB is rich in total dietary fibers (TDF) (83%), exhibiting high water-holding capacity (WHC) and vibrant colors. Different concentrations of AIR-PPB increase TDF content in FEPs by 7–21 times compared to the control pasta (CP). Although the optimal cooking time (OCT) decreases by 15–18% compared to CP, where a lower OCT should reduce cooking time and save energy, cooking loss (Cl) increases slightly but remains within an acceptable range of 8%. Additionally, AIR-PPB altered the texture properties of FEP, with a moderate decrease in mass increase index (MII), firmness, and stickiness. AIR-PPB impairs the gluten network’s structure in pasta due to AIR-PPB’s WHC, which competes with starch for water binding, increasing the starch gelatinization temperature. FEPs show an increased lightness and yellowness and improved sensory properties. Highly acceptable FEPs were obtained for the following substitution levels: FEP11 (AIR-PPB at 2% and PS of 145 µm), FEP9 (AIR-PPB 4% level with PS of 70 µm), FEP6 (AIR-PPB of 4% level with 219 µm PS), and FEP1 (AIR-PPB = 8.5% with 40 µm PS), as compared to other FEPs.  相似文献   

13.
Determination of the characteristics of native starches is crucial in order to select their best application in various industrial fields. Thus, two different types of non-traditional native starches from the Dioscoreaceas species (Dioscorea sp. and Dioscorea piperifolia Humb. var. Wild) were studied regarding their thermal, structural and rheological properties. The results were contrasted with traditional commercial starch sources (potato, cassava and corn). From the thermogravimetric results (TG/DTG), D. piperifolia starch obtained the highest thermal stability of the samples, except for potato starch. Furthermore, using differential scanning calorimetry and viscoamylograph profiles (RVA), it was found that the Dioscoreaceas starches presented a higher onset (T o) temperature and susceptibility to retrogradation. They also showed lower values in relation to relative crystallinity, which was calculated from their X-ray patterns and tendency to white (L*) colour. The shapes of the Discoreaceas starch granules were determined using electron microscopy; it was found that as the potato starch the Dioscoreaceas starches showed a wide range of particle size.  相似文献   

14.
Chickpea cooking water (CCW), known as aquafaba, has potential as a replacement for egg whites due to its emulsion and foaming properties which come from the proteins and starch that leach out from chickpeas into the cooking water. High pressure (HP) processing has the ability to modify the functional characteristics of proteins. It is hypothesized that HP processing could favorably affect the functional properties of CCW proteins by influencing their structure. The objective of this study to evaluate the effect of HP treatment on the associated secondary structure, emulsion properties and thermal characteristics of CCW proteins. A central composite rotatable design is used with pressure level (227–573 MPa) and treatment time (6–24 min) as HP variables, and concentration of freeze dried CCW aquafaba powder (11–29%) as product variable, and compared to untreated CCW powder. HP improves aquafaba emulsion properties compared to control sample. HP reduces protein aggregates by 33.3%, while β-sheets decreases by 4.2–87.6% in which both correlated to increasing protein digestibility. α-helices drops by 50%. It affects the intensity of some HP treated samples, but not the trend of bands in most of them. HP treatment decreases Td and enthalpy because of increasing the degree of denaturation.  相似文献   

15.
The aim of this study was to investigate thermal and rheological properties of selected ancient grain flours and to evaluate rheological properties of mixtures thereof represented by pasta dough and dry pasta. Flours from spelt, einkorn, and emmer ancient wheat varieties were combined with quinoa flour. All these flour sources are considered healthy grains of high bioactive component content. Research results were compared to durum wheat flour or spelt wheat flour systems. Differential scanning calorimeter (DSC) and a rapid visco analyzer (RVA) were used to investigate the phase transition behavior of the flours and pasting characteristics of the flours and dried pasta. Angular frequency sweep experiments and creep and recovery tests of the pasta dough were performed. The main components modifying the pasta dough structure were starch and water. Moreover, the proportion of the individual flours influenced the rheological properties of the dough. The durum wheat dough was characterized by the lowest values of the K′ and K″ parameters of the power law models (24,861 Pa·sn′ and 10,687 Pa·sn″, respectively) and the highest values of the instantaneous (J0) and retardation (J1) compliances (0.453 × 10−4 Pa and 0.644 × 10−4 Pa, respectively). Replacing the spelt wheat flour with the other ancient wheat flours and quinoa flour increased the proportion of elastic properties and decreased values of the J0 and J1 of the pasta dough. Presence of the quinoa flour increased pasting temperature (from 81.4 up to 83.3 °C) and significantly influenced pasting viscosities of the spelt wheat pasta samples. This study indicates a potential for using mixtures of spelt, einkorn, and emmer wheat flours with quinoa flour in the production of innovative pasta dough and pasta products.  相似文献   

16.
Comparison of A and B starch granules from three wheat varieties   总被引:2,自引:0,他引:2  
Zeng J  Li G  Gao H  Ru Z 《Molecules (Basel, Switzerland)》2011,16(12):10570-10591
Three starches from the wheat varieties AK58, ZM18 and YZ4110 were separated into large (A) and small (B) granules, which were characterized structurally and evaluated for their functional properties. SEM results showed that the size of A-granules from ZM18 and YZ4110 were about the same, but the sizes of A-granules and B-granules from AK58 were larger than those of ZM18 and YZ4110. FTIR spectra showed that all the samples exhibited a similar pattern, with seven main modes with maximum absorbance peaks near 3,500, 3,000, 1,600, 1,400, 1,000, 800, 500 cm-1. The B-granules of ZM18 and YZ4110 had less amylose content, although the difference among the total amylose contents of the three unfractionated starches was not significant. X-ray diffraction (XRD) patterns showed predominantly A-type crystallinity for all the starches. The A-granules showed sharper XRD patterns than the other starches. DSC analysis showed that the A-granules had broader ranges of gelatinization temperatures than the B-granules from the same wheat variety. The gelatinization enthalpy (ΔH) of A-granules was higher than that of B-granules. AK58 exhibited the smallest enthalpy, while ZM18 showed the largest enthalpy. In pasting tests, the A-granule starch of AK58 had higher peak, final and setback viscosity, lower breakdown and pasting temperature, and the B-granule starch and unfractionated starch of AK58 had lower peak, breakdown, final and setback viscosity and higher pasting temperature than ZM18 and YZ4110.  相似文献   

17.
大米淀粉糊化过程的光谱分析   总被引:3,自引:0,他引:3  
采用衰减全反射傅立叶变换红外光谱仪跟踪测定了不同品种大米淀粉的糊化过程,同时与X-射线衍射仪测定的淀粉结晶度相对比,研究了淀粉颗粒内结晶结构在糊化过程中变化的详细情况.利用红外光谱仪计算出天然大米淀粉及其在糊化过程中各个阶段代表结晶区特征的1047cm-1和代表非晶区特征的1022cm-1两处红外吸收峰强度的比值.结果表明,天然淀粉的结晶区主要由支链淀粉侧链的双螺旋结构所形成;在加热过程中淀粉的结晶结构被破坏,并且直链淀粉含量越高,其结晶结构在糊化过程中破坏越慢,说明直链淀粉能抑制淀粉结晶结构的破坏.利用X-射线衍射仪测定了大米淀粉糊化过程各个阶段的结晶度,进一步验证了淀粉的结晶结构在糊化过程中的损失.虽然,两种测定方法对"结晶度"的定义不同,但对于淀粉结晶程度的测定具有相关性和可比性,能为研究淀粉的糊化行为提供有利的补充信息.  相似文献   

18.
Effect of NaOH treatment on granular hydrolysis of cereal starches was studied and granular starch hydrolyzing enzyme is used to hydrolyze native and NaOH-treated starch for 24?h. The dextrose equivalent value of NaOH-treated starch increased significantly compared to native starch, i.e., 28–38?% for corn, 7–37?% for rice, but no significant increase for corn starch. Scanning electron microscopy micrographs showed that NaOH treatment caused an enlargement of pores and degrades the surface of starch granules. Hydrolyzed-treated starch exhibited rougher surface and more porous granules compared to native starch. The swelling power and pasting properties of NaOH-treated starches were markedly altered after hydrolysis. X-ray pattern of all starches showed no changes and the amylose content decrease significantly after hydrolysis, which could due to extensive degradation of amorphous region. Evidently, NaOH treatment below gelatinization temperature was effective in enhancing the degree of granular starch hydrolysis.  相似文献   

19.
Effect of additives on the starch gelatinization was governed by the processing conditions. The order-disorder transition of starch in water can occur in more than one way and the effect of polar additives on gelatinization can also be in more than one way. The additives appear to be plasticising thermoplastic starches, resulting in improving rheological properties. The thermoplastic starches with the additives are all biodegradable although the rates of biodegradability are slightly different.  相似文献   

20.
The aim of the study was to assess the influence of replacing wheat flour with hazelnuts or walnuts, in various amounts, on the thermal and rheological properties of the obtained systems. The research material were systems in which wheat flour was replaced with ground hazelnuts (H) or walnuts (W) in the amount of 5%, 10%, and 15%. The parameters of the thermodynamic gelatinization characteristics were determined by the differential scanning calorimetry method. In addition, the pasting characteristics were determined with the use of a viscosity analyzer and the viscoelastic properties were assessed. Sweep frequency and creep and recovery tests were used to assess the viscoelastic properties of the tested gels. It was found that replacing wheat flour with nuts increased the values of gelatinization temperature, gelatinization, and retrogradation enthalpy, and the degree of retrogradation. The highest viscosity was characteristic of the control sample (2039 mPa·s), and the lowest for the paste with 15% addition of walnuts (1120 mPa·s). Replacing the flour with nuts resulted in a very visible reduction in the viscosity of such systems. In addition, gels based on the systems with the addition of H and W were weak gels (tan δ = G″/G′ > 0.1), and the values of G′ and G″ parameters decreased with the increased share of nuts in the systems. Creep and recovery analysis indicated that the systems in which wheat flour was replaced with hazelnuts were less susceptible to deformation compared to the systems with the addition of W.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号