首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
Euphorbia species have a rich history of ethnomedicinal use and ethnopharmacological applications in drug discovery. This is due to the presence of a wide range of diterpenes exhibiting great structural diversity and pharmacological activities. As a result, Euphorbia diterpenes have remained the focus of drug discovery investigations from natural products. The current review documents over 350 diterpenes, isolated from Euphorbia species, their structures, classification, biosynthetic pathways, and their structure–activity relationships for the period covering 2013–2020. Among the isolated diterpenes, over 20 skeletal structures were identified. Lathyrane, jatrophane, ingenane, ingenol, and ingol were identified as the major diterpenes in most Euphorbia species. Most of the isolated diterpenes were evaluated for their cytotoxicity activities, multidrug resistance abilities, and inhibitory activities in vitro, and reported good activities with significant half-inhibitory concentration (IC50) values ranging from 10–50 µM. The lathyranes, isopimaranes, and jatrophanes diterpenes were further found to show potent inhibition of P-glycoprotein, which is known to confer drug resistance abilities in cells leading to decreased cytotoxic effects. Structure–activity relationship (SAR) studies revealed the significance of a free hydroxyl group at position C-3 in enhancing the anticancer and anti-inflammatory activities and the negative effect it has in position C-2. Esterification of this functionality, in selected diterpenes, was found to enhance these activities. Thus, Euphorbia diterpenes offer a valuable source of lead compounds that could be investigated further as potential candidates for drug discovery.  相似文献   

2.
Four new pentacyclic triterpenoids named Sabiadiscolor A–D (1 and 7–9) together with eleven known ones were isolated by repeated column chromatography. Their structures were identified and characterized by NMR and MS spectral data as 6 oleanane-type pentacyclic triterpenoids (1–6), 7 ursane-type ones (7–13), and 2 lupanane-type ones (14–15). Except for compound 15, all other compounds were isolated from Sabia discolor Dunn for the first time. Their α-glycosidase inhibitory activities were evaluated, which showed that compounds 1, 3, 8, 9, 13, and 15 implied remarkable activities with IC50 values ranging from 0.09 to 0.27 μM, and the preliminary structure–activity relationship was discussed.  相似文献   

3.
Toona sinensis (A. Juss.) Roem is an edible medicinal plant that belongs to the genus Toona within the Meliaceae family. It has been confirmed to display a wide variety of biological activities. During our continuous search for active constituents from the seeds of T. sinensis, two new acyclic diterpenoids (1–2), together with five known limonoid-type triterpenoids (3–7), five known apotirucallane-type triterpenoids (8–12), and three known cycloartane-type triterpenoids (13–15), were isolated and characterized. Their structures were identified based on extensive spectroscopic experiments, including nuclear magnetic resonance (NMR), high-resolution electrospray ionization mass spectra (HR-ESI-MS), and electronic circular dichroism (ECD), as well as the comparison with those reported in the literature. We compared these findings to those reported in the literature. Compounds 5, 8, and 13–14 were isolated from the genus Toona, and compounds 11 and 15 were obtained from T. sinensis for the first time. The antidiabetic nephropathy effects of isolated compounds against high glucose-induced oxidative stress and inflammation in rat glomerular mesangial cells (GMCs) were assessed in vitro. The results showed that new compounds 1 and 2 could significantly increase the levels of Nrf-2/HO-1 and reduce the levels of NF-κB, TNF-α, and IL-6 at concentrations of 30 μM. These results suggest that compounds 1 and 2 might prevent the occurrence and development of diabetic nephropathy (DN) and facilitate the research and development of new antioxidant and anti-inflammatory drugs suitable for the prevention and treatment of DN.  相似文献   

4.
Three new polyhydroxylated oleanane triterpenoids, cissatriterpenoid A−C (1−3), along with one known analogue (4), were isolated from the whole plant of Cissampelos pareira var. hirsuta. Their chemical structures were elucidated by extensive spectroscopic data (IR, HR-ESI-MS, 1H-NMR, 13C-NMR, DEPT, 1H-1H COSY, HSQC, HMBC, NOESY) and the microhydrolysis method. The isolation of compounds 1–4 represents the first report of polyhydroxylated oleanane triterpenoids from the family Menispermaceae. All isolated compounds were evaluated for their cytotoxicity against five human cancer cell lines, and the inhibitory activity against NO release in LPS-induced RAW 264.7 cells. Compound 3 showed the most potent cytotoxic activities against the A549, SMMC-7721, MCF-7, and SW480 cell lines, with IC50 values of 17.55, 34.74, 19.77, and 30.39 μM, respectively, whereas three remaining ones were found to be inactive. The preliminary structure–activity relationship analysis indicated that the γ-lactone ring at C-22 and C-29, and the olefinic bond at C-12 and C-13 were structurally required for the cytotoxicity of polyhydroxylated oleanane triterpenoids against these four cell lines. Based on lipid-water partition coefficients, compound 3 is less lipophilic than 1 and 4, which agrees with their cytotoxic activities. This confirms the potential of C. pareira var. hirsuta in the tumor treatment.  相似文献   

5.
Ethanolic extracts of samples of temperate zone propolis, four from the UK and one from Poland, were tested against three Trypanosoma brucei strains and displayed EC50 values < 20 µg/mL. The extracts were fractionated, from which 12 compounds and one two-component mixture were isolated, and characterized by NMR and high-resolution mass spectrometry, as 3-acetoxypinobanksin, tectochrysin, kaempferol, pinocembrin, 4′-methoxykaempferol, galangin, chrysin, apigenin, pinostrobin, cinnamic acid, coumaric acid, cinnamyl ester/coumaric acid benzyl ester (mixture), 4′,7-dimethoxykaempferol, and naringenin 4′,7-dimethyl ether. The isolated compounds were tested against drug-sensitive and drug-resistant strains of T. brucei and Leishmania mexicana, with the highest activities ≤ 15 µM. The most active compounds against T. brucei were naringenin 4′,7 dimethyl ether and 4′methoxy kaempferol with activity of 15–20 µM against the three T. brucei strains. The most active compounds against L. mexicana were 4′,7-dimethoxykaempferol and the coumaric acid ester mixture, with EC50 values of 12.9 ± 3.7 µM and 13.1 ± 1.0 µM. No loss of activity was found with the diamidine- and arsenical-resistant or phenanthridine-resistant T. brucei strains, or the miltefosine-resistant L. mexicana strain; no clear structure activity relationship was observed for the isolated compounds. Temperate propolis yields multiple compounds with anti-kinetoplastid activity.  相似文献   

6.
Four new daphnane-type diterpenes named tianchaterpenes C-F (1–4) and six known ones were isolated from Stelleropsis tianschanica. Their structures were elucidated based on chemical and spectral analyses. The comparisons of calculated and experimental electronic circular dichroism (ECD) methods were used to determine the absolute configurations of new compounds. Additionally, compounds 1–10 were evaluated for their cytotoxic activities against HGC-27 cell lines; the results demonstrate that compound 2 had strong cytotoxic activities with IC50 values of 8.8 µM, for which activity was better than that of cisplatin (13.2 ± 0.67 µM).  相似文献   

7.
Seven new compounds, including one dimer novel skeleton, chamaecyformosanin A (1); three diterpenes, chamaecyformosanins B–D (2–4); one sesquiterpene, chamaecyformosanin E (5); and two monoterpenes, chamaecyformosanins F and G (6 and 7) were isolated from the methanol extract of the bark of Chamaecyparis obtusa var. formosana. Their structures were established by the mean of spectroscopic analysis and the comparison of NMR data with those of known analogues. Their structures were elucidated on the basis of physicochemical evidence, in-depth NMR spectroscopic analysis, and high-resolution mass spectrometry. Furthermore, the isolated compounds were subjected to an evaluation of their antimicrobial activity. Metabolites 1, 3, and 4 present antibacterial activities. It is worth mentioning that the chemical composition of the bark of C. obtusa var. formosana has never been studied in the past. This is the first time the barks from C. obtusa var. formosana were studied and two new skeleton compounds, 1 and 7, were obtained.  相似文献   

8.
Six lignols (1–6), including two new compounds (+)-(7R,8R)-palmitoyl alatusol D (1) and (+)-(7R,8R)-linoleyl alatusol D (2), along with four phenolics (7–10), a neolignan (11), three alkyl aryl ether-type lignans (12–14), two furofuran-type lignans (15–16), three benzofuran-type lignans (17–19), a tetrahydrofuran-type lignan (20), and a dibenzylbutane-type lignan (21) were isolated from the ethyl acetate-soluble fraction of the methanol extract of Platycodon grandiflorum (Jacq.) A. DC. root. The chemical structures of the obtained compounds were elucidated via high-resolution mass spectrometry and nuclear magnetic resonance (NMR) spectroscopy analyses. The obtained spectroscopic data agreed well with literature. Among the isolated compounds, eighteen (1–7 and 11–21) were isolated from P. grandiflorum and the Campanulaceae family for the first time. This is the first report on lignol and lignan components of P. grandiflorum. The anti-inflammatory effects of the isolated compounds were examined in terms of their ability to inhibit the production of pro-inflammatory cytokines IL-6, IL-12 p40, and TNF-α in lipopolysaccharide-stimulated murine RAW264.7 macrophage cells. Nine compounds (4–6, 12, and 15–19) exhibited inhibitory effects on IL-12 p40 production, eleven compounds (1–6, 12, 15–17, and 19) exhibited inhibitory activity on IL-6 production, and eleven compounds (1–6 and 15–19) exhibited inhibitory effects against TNF-α. These results warrant further investigation into the potential anti-inflammatory activity and general benefits of the phenolic constituents of P. grandiflorum root.  相似文献   

9.
Propolis, popularly known as bee glue, is a resinous, sticky substance produced by different bee species across the globe. Studies on the biological properties of propolis from the Philippines are rare. Hence, the current study aims at the chemical characterization of propolis produced by the stingless bees Tetragonula biroi Friese from the Philippines and to investigate its antitrypanosomal and anticancer properties. The determination of the chemical composition and characterization of propolis samples was achieved using liquid chromatography–mass spectrometry (LC-MS), -high-performance liquid chromatography–evaporative light scattering detector (HPLC-ELSD), and nuclear magnetic resonance (NMR) spectroscopy. Three major triterpenes were isolated and identified using HRESI-MS and 1H/13C NMR techniques. The spectral studies confirmed the presence of compounds such as isomangiferolic acid, 27-hydoxymangiferonic acid, and 27-hydroxyisomangiferolic acid. All crude propolis samples, isolated fractions, and pure compounds demonstrated moderate antitrypanosomal and anticancer properties compared to control drugs. Amongst the tested compounds, 27-hydoxymangiferonic acid exhibited the highest antitrypanosomal activity at a concentration of 11.6 µg/mL. The highest anticancer effect was demonstrated by the Ph-2 fraction, followed by 27-hydroxyisomangiferolic acid, with IC50 values of 129.6 and 153.3 µg/mL. Thus, it can be concluded that the observed biological activity of Philippine propolis is due to the combinatorial effect or synergistic action of the active compounds 27-hydoxymangiferonic acid and 27-hydroxyisomangiferolic acid.  相似文献   

10.
The chemical composition of propolis of four species of stingless bees (SLBs) from Argentina was determined, and its antibacterial and anticancer activity was evaluated on selected types of microbes and cancer cell lines. Volatile secretions of all propolis samples are formed by 174 C2–C15 organic compounds, mainly mono- and sesquiterpenes and their derivatives. The chromatograms of ether extracts showed 287 peaks, of which 210 were identified. The most representative groups in the extracts of various propolis samples were diterpenoids (mainly resin acids), triterpenoids and phenolic compounds: long-chain alkenyl phenols, resorcinols and salicylates. The composition of both volatile and extractive compounds turned out to be species-specific; however, in both cases, the pairwise similarity of the propolis of Scaptotrigona postica and Tetragonisca fiebrigi versus that of Tetragona clavipes and Melipona quadrifasciata quadrifasciata was observed, which indicated the similarity of the preferences of the respective species when choosing plant sources of resin. The composition of the studied extracts completely lacked flavonoids and phenolcarboxylic acids, which are usually associated with the biological activity and medicinal properties of propolis. However, tests on selected microbial species and cancer cell lines showed such activity. All propolis samples tested against Paenibacillus larvae, two species of Bacillus and E. coli showed biofilm inhibition unrelated to the inhibition of bacterial growth, leading to a decrease in their pathogenicity. Testing the anticancer activity of ether extracts using five types of cell cultures showed that all four types of propolis studied inhibit the growth of cancer cells in a dose- and time-dependent manner. Propolis harvested by T. clavipes demonstrated the highest cytotoxicity on all tested cell lines.  相似文献   

11.
During the screening of novel chemotherapeutic candidates from plants against adult T-cell leukemia/lymphoma, we identified that the extracts of Thuja occidentalis (Cupressaceae) showed potent anti-proliferative activity in MT-1 and MT-2 cells. Therefore, we attempted to isolate the active components from this plant. We isolated and identified 32 compounds (1–32; eight lignans, 18 terpenoids, and six flavonoids) from the extracts of the leaves and cones. Their structures were determined by spectroscopic analysis. Several of the isolated compounds inhibited the growth of both cell lines. Lignans showed more potent activity than other classes of compounds. A comparison of the activities of compounds 1–8 revealed that the presence of a trans-lactone (linkage of C-6 to C-7) correlated with increased activity. Diterpenes showed moderate activity, and the presence of a ketone moiety at the C-7 position correlated with increased activity in compounds 12–21. In addition, biflavones showed moderate activity, and the presence of methoxy functions appeared to influence the activity of these compounds. Several lignans were lead compound of anti-cancer reagent (etoposide). In conclusion, not only lignans, but also diterpenes and/or biflavones, may be promising candidates for the treatment of adult T-cell leukemia/lymphoma.  相似文献   

12.
Chromatographic purification of the alcoholic extract from the aerial parts of the Saudi plant Nuxia oppositifolia (Hochst.), Benth., resulted in five isolated phenolic compounds. Two flavones, hispidulin (1) and jaceosidin (2), and the phenylethanoid glycosides, verbascoside (3), isoverbascoside (4), and conandroside (5), were identified and their chemical structures were determined by spectroscopic analyses. The insecticidal activity of compounds 1 and 2, in addition to 11 compounds isolated in a previous research (6–16), was evaluated against the Yellow Fever mosquito, Aedes aegypti. Four compounds displayed adulticidal activity with LD50 values of 2–2.3 μg/mosquito. Free radical scavenging properties of the plant extracts and compounds (1–5) were evaluated by measuring the 1,1-diphenyl-2-picrylhydrazyl radical (DPPH) and 2,2′-azino-bis (3-ethylbenzothiazoline-6-sulfonate radical cation (ABTS•+) scavenging activity. All compounds exhibited notable activity, compared with the positive control, l-Ascorbic acid. This study suggests that N. oppositifolia could be a promising source of secondary metabolites, some with lethal adulticidal effect against Ae. aegypti.  相似文献   

13.
The chemical diversity of the approximately 1,200 natural products isolated from red algae of the genus Laurencia, in combination with the wide range of their biological activities, have placed species of Laurencia in the spotlight of marine chemists’ attention for over 60 years. The chemical investigation of the organic (CH2Cl2/MeOH) extracts of Laurencia microcladia and Laurencia obtusa, both collected off the coasts of Tinos island in the Aegean Sea, resulted in the isolation of 32 secondary metabolites, including 23 C15 acetogenins (1–23), 7 sesquiterpenes (24–30) and 2 diterpenes (31 and 32). Among them, six new C15 acetogenins, namely 10-acetyl-sagonenyne (2), cis-sagonenyne (3), trans-thuwalenyne C (4), tinosallene A (11), tinosallene B (12) and obtusallene XI (17), were identified and their structures were elucidated by extensive analysis of their spectroscopic data. Compounds 1–3, 5–11, 13 and 15–32 were evaluated for their antibacterial activity against Staphylococcus aureus and Escherichia coli.  相似文献   

14.
Euphorbia officinarum L. is a Moroccan endemic plant known as “Tikiout” and “Daghmus” that can also be found in Mauritania, Western Sahara, and Algeria. In the present review, “Euphorbia officinarum”, “metabolites” “hemisynthesis” were the keywords used for the research in the Web search engine Google Scholar and in the database Web of Science. Triterpenes, phytosterols and ingol diterpenes were isolated and identified in the latex of Moroccan E. officinarum. More than sixty triterpenes were obtained by hemisynthesis from natural triterpenes. Some of these derivatives had insecticidal and antimicrobial activity (phytopathogenic bacteria). The total phenol content and the antioxidant and anti-α-glucosidase activities were dependent on the time and temperature of extractions and also on the plant solvent ratio. The antioxidant activity of monofloral honey of E. officinarum origin was attributed to the phenol fraction (this fraction, previously isolated from honey samples, had better activity than the entire honey).  相似文献   

15.
Propolis samples from a geographical part of northwest Greece (Prespa National Park, PNP), which is characterized as a plant endemism center and biodiversity hotspot, were characterized through pollen analysis, chemically analyzed, and biologically evaluated. The majority of the studied propolis showed typical chemical constituents (phenolic acids, flavonoids, and chalcones) of European type, while a sample of Mediterranean-type propolis (rich in diterpenes) was also identified. The palynological characterization was implemented to determine the botanical origin and to explain the chemical composition. The total phenolic content and the DPPH assay showed that the European-type propolis samples possessed strong antioxidant activity (86–91% inhibition at 200 μg/mL). Moreover, promising antibacterial activity of the extracts (MIC values 0.56–1.95 mg/mL) and moderate antifungal activity (MIC values 1.13–2.40 mg/mL) were noticed, while the sample with the highest activity had a significant content in terpenes (Mediterranean type). Propolis samples from the PNP area represent a rich source of antibacterial and antioxidant compounds and confirm the fact that propolis is a significant natural product with potential use for improving human health and stimulating the body’s defense. Finally, it is noteworthy that a significant chemical diversity was demonstrated, even in samples from a limited geographical area as this of PNP.  相似文献   

16.
Two new ursane-type triterpenoids, named Polyanside A (1) and B (2), along with eleven known compounds (3–13), were isolated and elucidated from Maranthes polyandra (Benth.) Prance. The structures of these compounds were elucidated based on chemical evidence and multiple spectroscopic data. Isolated compounds were evaluated for anti-cancer, anti-inflammatory activities, and cytotoxicity on a normal human cell line (BJ). None of them showed activity and cytotoxicity. The hexane fraction was analyzed by GC-MS, resulting in the identification of forty-one compounds. This is the first comprehensive study on the phytochemistry of M. polyandra.  相似文献   

17.
In continuation of phytochemical investigations of the methanolic extract of Dictyopteris hoytii, we have obtained twelve compounds (1–12) through column chromatography. Herein, three compounds, namely, dimethyl 2-bromoterepthalate (3), dimethyl 2,6-dibromoterepthalate (4), and (E)-3-(4-(dimethoxymethyl)phenyl) acrylic acid (5) are isolated for the first time as a natural product, while the rest of the compounds (1, 2, 6–12) are known and isolated for the first time from this source. The structures of the isolated compounds were elucidated by advanced spectroscopic 1D and 2D NMR techniques including 1H, 13C, DEPT, HSQC, HMBC, COSY, NEOSY, and HR-MS and comparison with the reported literature. Furthermore, eight compounds (13–20) previously isolated by our group from the same source along with the currently isolated compounds (1–12) were screened against the CA-II enzyme. All compounds, except 6, 8, 14, and 17, were evaluated for in vitro bovine carbonic anhydrase-II (CA-II) inhibitory activity. Eventually, eleven compounds (1, 4, 5, 7, 9, 10, 12, 13, 15, 18, and 19) exhibited significant inhibitory activity against CA-II with IC50 values ranging from 13.4 to 71.6 μM. Additionally, the active molecules were subjected to molecular docking studies to predict the binding behavior of those compounds. It was observed that the compounds exhibit the inhibitory potential by specifically interacting with the ZN ion present in the active site of CA-II. In addition to ZN ion, two residues (His94 and Thr199) play an important role in binding with the compounds that possess a carboxylate group in their structure.  相似文献   

18.
The chemical investigation of the total alkaloid extract (TAE) of the stem bark of Araliopsis soyauxii (Rutaceae) afforded an unreported indolopyridoquinazoline (compound 1) along with nine previously known alkaloids 2–10. In addition, six semi-synthetic derivatives 3a–c, 4b, 5a and 6a were prepared by allylation and acetonidation of soyauxinium nitrate (5), edulinine (3), ribalinine (4) and arborinine (6). The structures and spectroscopic data of five of them are reported herein for the first time. The suggested mechanism for the formation of the new N-allylindolopyridoquinazoline 5a is presented. The structures of natural and derived compounds were determined employing extensive NMR and MS techniques. The absolute configuration of stereogenic centers in compounds 2–4 were determined using NOESY technique and confirmed by the single-crystal X-ray diffraction (SC-XRD) technique. The use of SC-XRD further enabled us to carry out a structural revision of soyauxinium chloride recently isolated from the same plant to soyauxinium nitrate (5). The TAE, fractions, compounds 1–7 and 9, and semi-synthetic derivatives 3a–c, 4b, 5a and 6a were evaluated for their cytotoxic activity towards the cervix carcinoma cell line KB-3-1. No significant activity was recorded for most of the compounds except for 9, which showed moderate activity against the tested cancer cell lines.  相似文献   

19.
Two new epimeric bibenzylated monoterpenes machaerifurogerol (1a) and 5-epi-machaerifurogerol (1b), and four known isoflavonoids (+)-vestitol (2), 7-O-methylvestitol (3), (+)-medicarpin (4), and 3,8-dihydroxy-9-methoxypterocarpan (5) were isolated from Machaerium Pers. This plant was previously assigned as Machaerium multiflorum Spruce, from which machaeriols A-D (6–9) and machaeridiols A-C (10–12) were reported, and all were then re-isolated, except the minor compound 9, for a comprehensive antimicrobial activity evaluation. Structures of the isolated compounds were determined by full NMR and mass spectroscopic data. Among the isolated compounds, the mixture 10 + 11 was the most active with an MIC value of 1.25 μg/mL against methicillin-resistant Staphylococcus aureus (MRSA) strains BAA 1696, −1708, −1717, −33591, and vancomycin-resistant Enterococcus faecium (VRE 700221) and E. faecalis (VRE 51299) and vancomycin-sensitive E. faecalis (VSE 29212). Compounds 6–8 and 10–12 were found to be more potent against MRSA 1708, and 6, 11, and 12 against VRE 700221, than the drug control ciprofloxacin and vancomycin. A combination study using an in vitro Checkerboard method was carried out for machaeriols (7 or 8) and machaeridiols (11 or 12), which exhibited a strong synergistic activity of 12 + 8 (MIC 0.156 and 0.625 µg/mL), with >32- and >8-fold reduction of MIC’s, compared to 12, against MRSA 1708 and −1717, respectively. In the presence of sub-inhibitory concentrations on polymyxin B nonapeptide (PMBN), compounds 10 + 11, 11, 12, and 8 showed activity in the range of 0.5–8 µg/mL for two strains of Acinetobacter baumannii, 2–16 µg/mL against Pseudomonas aeruginosa PAO1, and 2 µg/mL against Escherichia coli NCTC 12923, but were inactive (MIC > 64 µg/mL) against the two isolates of Klebsiella pneumoniae.  相似文献   

20.
Two new lactones, named Ardisicreolides A–B (1–2), together with four known flavonoids, Quercetin (3), Myricetrin (4), Quercitrin (5), Tamarixetin 3-O-rhamnoside (6), were isolated from the ethyl acetate portion of 70% ethanol extracts of dried leaves from Ardisia crenata Sims. These compounds were identified from Ardisia crenata Sims for the first time. The structures of 1–6 were elucidated according to 1D and 2D-NMR methods and together with the published literature. All of the isolated compounds were evaluated for in vitro anti-microbial effect against Escherichia coli, Pseudomonas aeuroginosa, Enterococcus faecalis, Proteus vulgaris, Staphylococcus aureus, and Bacillus subtilis. In addition, compounds 1–2 were assessed for anti-inflammatory activity by acting on LPS-induced RAW 264.7 macrophage cells in vitro. The results showed that only compound 2 exhibited moderate antibacterial activity on Bacillus subtilis. Moreover, compounds 1 and 2 were found to significantly inhibit the production of nitric oxide (NO) and reduce the release of tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), interleukin-4 (IL-4), and interleukin-10 (IL-10) in LPS-induced RAW 264.7 macrophage cells. The present data suggest that lactones from the leaves of A. crenata Sims might be used as a potential source of natural anti-inflammatory agents.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号