首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
Kahweol is a diterpene molecule found in coffee that exhibits a wide range of biological activity, including anti-inflammatory and anticancer properties. However, the impact of kahweol on pancreatic β-cells is not known. Herein, by using clonal rat INS-1 (832/13) cells, we performed several functional experiments including; cell viability, apoptosis analysis, insulin secretion and glucose uptake measurements, reactive oxygen species (ROS) production, as well as western blotting analysis to investigate the potential role of kahweol pre-treatment on damage induced by streptozotocin (STZ) treatment. INS-1 cells pre-incubated with different concentrations of kahweol (2.5 and 5 µM) for 24 h, then exposed to STZ (3 mmol/L) for 3 h reversed the STZ-induced effect on cell viability, apoptosis, insulin content, and secretion in addition to glucose uptake and ROS production. Furthermore, Western blot analysis showed that kahweol downregulated STZ-induced nuclear factor kappa B (NF-κB), and the antioxidant proteins, Heme Oxygenase-1 (HMOX-1), and Inhibitor of DNA binding and cell differentiation (Id) proteins (ID1, ID3) while upregulated protein expression of insulin (INS), p-AKT and B-cell lymphoma 2 (BCL-2). In conclusion, our study suggested that kahweol has anti-diabetic properties on pancreatic β-cells by suppressing STZ induced apoptosis, increasing insulin secretion and glucose uptake. Targeting NF-κB, p-AKT, and BCL-2 in addition to antioxidant proteins ID1, ID3, and HMOX-1 are possible implicated mechanisms.  相似文献   

2.
Catalpa pod has been used in traditional medicine for the treatment of diabetes mellitus in South America. Studies on the constituents of Catalpa species have shown that it is rich in iridoids. In the present study, three previously undescribed compounds (2–4), including two secoiridoid derivatives along with twelve known compounds, were isolated from the fruits of Catalpa bignonioides Walt. In addition, fully assigned 13C-NMR of 5,6-dihydroxy-7,4’-dimethoxyflavone-6-O-sophoroside (1) is reported for the first time in the present study. The structures of compounds were determined on the basis of extensive spectroscopic methods, including UV, IR, 1D, and 2D NMR, mass spectroscopy, and CD spectroscopic data. All the isolated compounds were evaluated for α-glucosidase inhibitory activity. Among the tested compounds, compounds 2, 3, and 9 exhibited significant inhibitory activity against α-glucosidase enzyme assay. Meanwhile, the effect of compounds 2, 3, and 9 on glucose-stimulated insulin secretion (GSIS) was measured using pancreatic β-cells. Compounds 2, 3, and 9 exhibited non-cytotoxicity-stimulated insulin secretion in INS-1 cells. The expression levels of proteins associated with β-cell function and insulin secretion such as phosphorylation of total insulin receptor substrate-2 (IRS-2), phosphatidylinositol 3-kinase (PI3K), Akt, activated pancreatic duodenal homeobox-1 (PDX-1), and peroxisome proliferator-activated receptor-γ (PPAR-γ) were increased in INS-1 cells after treatment with compounds 2, 3, and 9. The findings of the present study could provide a scientific warrant for their application as a potential antidiabetic agent.  相似文献   

3.
Fatty acid amides (FAAs) are a family of second-messenger lipids that target cannabinoid receptors, and are known mediators of glucose-stimulated insulin secretion from pancreatic β-cells. Due to the diversity observed in FAA structure and pharmacology, coupled with the expression of at least 3 different cannabinoid G protein-coupled receptors in primary and model β-cells, our understanding of their role is limited by our inability to control their actions in time and space. To investigate the mechanisms by which FAAs regulate β-cell excitability, we developed the Optically-Cleavable Targeted (OCT)-ligand approach, which combines the spatial resolution of self-labeling protein (SNAP-) tags with the temporal control of photocaged ligands. By linking a photocaged FAA to an o-benzylguanine (BG) motif, FAA signalling can be directed towards genetically-defined cellular membranes. We designed a probe to release palmitoylethanolamide (PEA), a GPR55 agonist known to stimulate glucose-stimulated insulin secretion (GSIS). When applied to β-cells, OCT-PEA revealed that plasma membrane GPR55 stimulates β-cell Ca2+ activity via phospholipase C. Moving forward, the OCT-ligand approach can be translated to other ligands and receptors, and will open up new experimental possibilities in targeted pharmacology.

Optically-cleavable targeted ligands unite photocaged chemistry with genetic targeting to induce cell activity at defined membranes. OCT-PEA uncaging stiumlates β-cell activity via cell surface GPR55.  相似文献   

4.
5.
Previous studies have demonstrated that Ganoderma lucidum polysaccharides (Gl-PS) exhibited potential antihyperglycemic effect in rats. The aim of the present study was to investigate the mechanism of the hypoglycemic effect of a low- molecular-weight Gl-PS in streptozotocin (STZ)-induced diabetic Sprague-Dawley (SD) rats. Gl-PS was extracted and purified from Ganodema lucidum fruiting body. 50 male SD rats were included in the study; 10 were taken as healthy controls; 40 were induced to diabetes by a single injection of 65 mg/kg STZ, of which 30 were selected as successful diabetic rat models. The 30 diabetic rats were divided into three groups: Gl-PS (200 mg/kg Gl-PS), metformin (100 mg/kg metformin) and diabetic control (n = 10 per group). After eight weeks' oral administration, plasma concentrations of fasting glucose, triacylglyceride, total cholesterol and nitric oxide were significantly decreased in Gl-PS and metformin groups. Pancreatic superoxide dismutase, catalase and glutathione peroxidase were significantly increased in Gl-PS and metformin groups. Histopathological results showed that Gl-PS and metformin had protective effect on β-cells. The mRNA expressions of Bcl-2 and PDX-1 in pancreas were up-regulated, but Bax, iNOS and Casp-3 down-regulated in Gl- PS and metformin groups compared to diabetic control group. The present results suggested that Gl-PS had a hypoglycemic effect in STZ-induced diabetic rats through preventing apoptosis of pancreatic β-cells and enhancing β-cells regeneration.  相似文献   

6.
Copper (Cu) is essential for multiple biochemical processes, and copper sulphate (CuSO4) is a pesticide used for repelling pests. Accidental or intentional intoxication can induce multiorgan toxicity and could be fatal. Curcumin (CUR) is a potent antioxidant, but its poor systemic bioavailability is the main drawback in its therapeutic uses. This study investigated the protective effect of CUR and N-CUR on CuSO4-induced cerebral oxidative stress, inflammation, and apoptosis in rats, pointing to the possible involvement of Akt/GSK-3β. Rats received 100 mg/kg CuSO4 and were concurrently treated with CUR or N-CUR for 7 days. Cu-administered rats exhibited a remarkable increase in cerebral malondialdehyde (MDA), NF-κB p65, TNF-α, and IL-6 associated with decreased GSH, SOD, and catalase. Cu provoked DNA fragmentation, upregulated BAX, caspase-3, and p53, and decreased BCL-2 in the brain of rats. N-CUR and CUR ameliorated MDA, NF-κB p65, and pro-inflammatory cytokines, downregulated pro-apoptotic genes, upregulated BCL-2, and enhanced antioxidants and DNA integrity. In addition, both N-CUR and CUR increased AKT Ser473 and GSK-3β Ser9 phosphorylation in the brain of Cu-administered rats. In conclusion, N-CUR and CUR prevent Cu neurotoxicity by attenuating oxidative injury, inflammatory response, and apoptosis and upregulating AKT/GSK-3β signaling. The neuroprotective effect of N-CUR was more potent than CUR.  相似文献   

7.
8.
α-Cubebenoate derived from Schisandra chinensis has been reported to possess anti-allergic, anti-obesity, and anti-inflammatory effects and to exhibit anti-septic activity, but its anti-cancer effects have not been investigated. To examine the anti-cancer activity of α-cubebenoate, we investigated its effects on the proliferation, apoptosis, and metastasis of CT26 cells. The viabilities of CT26 cells (a murine colorectal carcinoma cell line) and HCT116 cells (a human colon cancer cell line) were remarkably and dose-dependently diminished by α-cubebenoate, whereas the viability of CCD-18Co cells (a normal human fibroblast cell line) were unaffected. Furthermore, α-cubebenoate treatment increased the number of apoptotic CT26 cells as compared with Vehicle-treated cells and increased Bax, Bcl-2, Cas-3, and Cleaved Cas-3 protein levels by activating the MAP kinase signaling pathway. α-Cubebenoate also suppressed CT26 migration by regulating the PI3K/AKT signaling pathway. Furthermore, similar reductions were observed in the expression levels of some migration-related proteins including VEGFA, MMP2, and MMP9. Furthermore, reduced VEGFA expression was found to be accompanied by the phosphorylations of FAK and MLC in the downstream signaling pathway of adhesion protein. The results of the present study provide novel evidence that α-cubebenoate can stimulate apoptosis and inhibit metastasis by regulating the MAPK, PI3K/AKT, and FAK/MLC signaling pathways.  相似文献   

9.
Triple-negative breast cancer (TNBC) is a refractory type of breast cancer that does not yet have clinically effective drugs. The aim of this study is to investigate the synergistic effects and mechanisms of resveratrol combined with cisplatin on human breast cancer MDA-MB-231 (MDA231) cell viability, migration, and invasion in vivo and in vitro. In vitro, MTS assays showed that resveratrol combined with cisplatin inhibits cell viability as a concentration-dependent manner, and produced synergistic effects (CI < 1). Transwell assay showed that the combined treatment inhibits TGF-β1-induced cell migration and invasion. Immunofluorescence assays confirmed that resveratrol upregulated E-cadherin expression and downregulated vimentin expression. Western blot assay demonstrated that resveratrol combined with cisplatin significantly reduced the expression of fibronectin, vimentin, P-AKT, P-PI3K, P-JNK, P-ERK, Sma2, and Smad3 induced by TGF-β1 (p < 0.05), and increased the expression of E-cadherin (p < 0.05), respectively. In vivo, resveratrol enhanced tumor growth inhibition and reduced body weight loss and kidney function impairment by cisplatin in MDA231 xenografts, and significantly reduced the expressions of P-AKT, P-PI3K, Smad2, Smad3, P-JNK, P-ERK, and NF-κB in tumor tissues (p < 0.05). These results indicated that resveratrol combined with cisplatin inhibits the viability of breast cancer MDA231 cells synergistically, and inhibits MDA231 cells invasion and migration through Epithelial-mesenchymal transition (EMT) approach, and resveratrol enhanced anti-tumor effect and reduced side of cisplatin in MDA231 xenografts. The mechanism may be involved in the regulations of PI3K/AKT, JNK, ERK and NF-κB expressions.  相似文献   

10.
Type 1 diabetes (T1D) development, in part, is due to ER stress-induced β-cell apoptosis. Activation of the Ca2+-independent phospholipase A2 beta (iPLA2β) leads to the generation of pro-inflammatory eicosanoids, which contribute to β-cell death and T1D. ER stress induces iPLA2β-mediated generation of pro-apoptotic ceramides via neutral sphingomyelinase (NSMase). To gain a better understanding of the impact of iPLA2β on sphingolipids (SLs), we characterized their profile in β-cells undergoing ER stress. ESI/MS/MS analyses followed by ANOVA/Student’s t-test were used to assess differences in sphingolipids molecular species in Vector (V) control and iPLA2β-overexpressing (OE) INS-1 and Akita (AK, spontaneous model of ER stress) and WT-littermate (AK-WT) β-cells. As expected, iPLA2β induction was greater in the OE and AK cells in comparison with V and WT cells. We report here that ER stress led to elevations in pro-apoptotic and decreases in pro-survival sphingolipids and that the inactivation of iPLA2β restores the sphingolipid species toward those that promote cell survival. In view of our recent finding that the SL profile in macrophages—the initiators of autoimmune responses leading to T1D—is not significantly altered during T1D development, we posit that the iPLA2β-mediated shift in the β-cell sphingolipid profile is an important contributor to β-cell death associated with T1D.  相似文献   

11.
Alzheimer’s disease (AD) is a severe neurodegenerative disorder. AD is pathologically characterized by the formation of intracellular neurofibrillary tangles, and extracellular amyloid plaques which were comprised of amyloid-beta (Aβ) peptides. Aβ induces neurodegeneration by activating microglia, which triggers neurotoxicity by releasing various inflammatory mediators and reactive oxygen species (ROS). Nuclear factor-kappa B (NF-κB) is expressed in human tissues including the brain and plays an important role in Aβ-mediated neuronal inflammation. Thus, the identification of molecules that inhibit the NF-κB pathway is considered an attractive strategy for the treatment and prevention of AD. Isoorientin (3′,4′,5,7-Tetrahydroxy-6-C-glucopyranosyl flavone; ISO), which can be extracted from several plant species, such as Philostachys and Patrinia is known to have various pharmacological activities such as anticancer, antioxidant, and antibacterial activity. However, the effect of ISO on Aβ-mediated inflammation and apoptosis in the brain has yet to be elucidated. In the present study, we investigated whether ISO regulated Aβ-induced neuroinflammation in microglial cells and further explored the underlying mechanisms. Our results showed that ISO inhibited the expression of iNOS and COX-2 induced by Aβ25–35. And, it inhibited the secretion of pro-inflammatory cytokines such as tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6). In addition, ISO reduced the ROS production in Aβ25–35-induced BV2 cells and inhibited NF-κB activation. Furthermore, ISO blocked Aβ25–35-induced apoptosis of BV2 cells. Based on these findings, we suggest that ISO represents a promising therapeutic drug candidate for the treatment and prevention of AD.  相似文献   

12.
Increasing evidence has shown that small ubiquitin-like modifier (SUMO) modification plays an important role in metabolic regulation. We previously demonstrated that SUMO-specific protease 2 (SENP2) is involved in lipid metabolism in skeletal muscle and adipogenesis. In this study, we investigated the function of SENP2 in pancreatic β cells by generating a β cell-specific knockout (Senp2-βKO) mouse model. Glucose tolerance and insulin secretion were significantly impaired in the Senp2-βKO mice. In addition, glucose-stimulated insulin secretion (GSIS) was decreased in the islets of the Senp2-βKO mice without a significant change in insulin synthesis. Furthermore, islets of the Senp2-βKO mice exhibited enlarged mitochondria and lower oxygen consumption rates, accompanied by lower levels of S616 phosphorylated DRP1 (an active form of DRP1), a mitochondrial fission protein. Using a cell culture system of NIT-1, an islet β cell line, we found that increased SUMO2/3 conjugation to DRP1 due to SENP2 deficiency suppresses the phosphorylation of DRP1, which possibly induces mitochondrial dysfunction. In addition, SENP2 overexpression restored GSIS impairment induced by DRP1 knockdown and increased DRP1 phosphorylation. Furthermore, palmitate treatment decreased phosphorylated DRP1 and GSIS in β cells, which was rescued by SENP2 overexpression. These results suggest that SENP2 regulates mitochondrial function and insulin secretion at least in part by modulating the phosphorylation of DRP1 in pancreatic β cells.Subject terms: Sumoylation, Diabetes, Mechanisms of disease, Phosphorylation  相似文献   

13.
As glucose is known to induce insulin secretion in pancreatic β cells, this study investigated the role of a phospholipase D (PLD)-related signaling pathway in insulin secretion caused by high glucose in the pancreatic β-cell line MIN6N8. It was found that the PLD activity and PLD1 expression were both increased by high glucose (33.3 mM) treatment. The dominant negative PLD1 inhibited glucose-induced Beta2 expression, and glucose-induced insulin secretion was blocked by treatment with 1-butanol or PLD1-siRNA. These results suggest that high glucose increased insulin secretion through a PLD1-related pathway. High glucose induced the binding of Arf6 to PLD1. Pretreatment with brefeldin A (BFA), an Arf inhibitor, decreased the PLD activity as well as the insulin secretion. Furthermore, BFA blocked the glucose-induced mTOR and p70S6K activation, while mTOR inhibition with rapamycin attenuated the glucose induced Beta2 expression and insulin secretion. Thus, when taken together, PLD1 would appear to be an important regulator of glucose-induced insulin secretion through an Arf6/PLD1/mTOR/p70S6K/Beta2 pathway in MIN6N8 cells.  相似文献   

14.
Oxidative stress (OS) is a metabolic dysfunction mediated by the imbalance between the biochemical processes leading to elevated production of reactive oxygen species (ROS) and the antioxidant defense system of the body. It has a ubiquitous role in the development of numerous noncommunicable maladies including cardiovascular diseases, cancers, neurodegenerative diseases, aging and respiratory diseases. Diseases associated with metabolic dysfunction may be influenced by changes in the redox balance. Lately, there has been increasing awareness and evidence that diabetes mellitus (DM), particularly type 2 diabetes, is significantly modulated by oxidative stress. DM is a state of impaired metabolism characterized by hyperglycemia, resulting from defects in insulin secretion or action, or both. ROS such as hydrogen peroxide and the superoxide anion introduce chemical changes virtually in all cellular components, causing deleterious effects on the islets of β-cells, in turn affecting insulin production. Under hyperglycemic conditions, various signaling pathways such as nuclear factor-κβ (NF-κβ) and protein kinase C (PKC) are also activated by ROS. All of these can be linked to a hindrance in insulin signaling pathways, leading to insulin resistance. Hyperglycemia-induced oxidative stress plays a substantial role in complications including diabetic nephropathy. DM patients are more prone to microvascular as well as atherosclerotic macrovascular diseases. This systemic disease affects most countries around the world, owing to population explosion, aging, urbanization, obesity, lifestyle, etc. However, some modulators, with their free radical scavenging properties, can play a prospective role in overcoming the debilitating effects of OS. This review is a modest approach to summarizing the basics and interlinkages of oxidative stress, its modulators and diabetes mellitus. It may add to the understanding of and insight into the pathophysiology of diabetes and the crucial role of antioxidants to weaken the complications and morbidity resulting from this chronic disease.  相似文献   

15.
Adenosine triphosphate (ATP) is the key energy intermediate of cellular metabolic processes and a ubiquitous extracellular messenger. As an extracellular messenger, ATP acts at plasma membrane P2 receptors (P2Rs). The levels of extracellular ATP (eATP) are set by both passive and active release mechanisms and degradation processes. Under physiological conditions, eATP concentration is in the low nanomolar range but can rise to tens or even hundreds of micromoles/L at inflammatory sites. A dysregulated eATP homeostasis is a pathogenic factor in several chronic inflammatory diseases, including type 2 diabetes mellitus (T2DM). T2DM is characterized by peripheral insulin resistance and impairment of insulin production from pancreatic β-cells in a landscape of systemic inflammation. Although various hypoglycemic drugs are currently available, an effective treatment for T2DM and its complications is not available. However, counteracting systemic inflammation is anticipated to be beneficial. The postulated eATP increase in T2DM is understood to be a driver of inflammation via P2X7 receptor (P2X7R) activation and the release of inflammatory cytokines. Furthermore, P2X7R stimulation is thought to trigger apoptosis of pancreatic β-cells, thus further aggravating hyperglycemia. Targeting eATP and the P2X7R might be an appealing novel approach to T2DM therapy.  相似文献   

16.
Type 2 diabetes mellitus has been a major health issue with increasing morbidity and mortality due to macrovascular and microvascular complications. The urgent need for improved methods to control hyperglycemic complications reiterates the development of innovative preventive and therapeutic treatment strategies. In this perspective, xanthone compounds in the pericarp of the mangosteen fruit, especially α-mangostin (MGN), have been recognized to restore damaged pancreatic β-cells for optimal insulin release. Therefore, taking advantage of the robust use of nanotechnology for targeted drug delivery, we herein report the preparation of MGN loaded nanosponges for anti-diabetic therapeutic applications. The nanosponges were prepared by quasi-emulsion solvent evaporation method. Physico-chemical characterization of formulated nanosponges with satisfactory outcomes was performed with Fourier transform infra-red (FTIR) spectroscopy, differential scanning calorimetry (DSC), and scanning electron microscopy (SEM). Zeta potential, hydrodynamic diameter, entrapment efficiency, drug release properties, and stability studies at stress conditions were also tested. Molecular docking analysis revealed significant interactions of α-glucosidase and MGN in a protein-ligand complex. The maximum inhibition by nanosponges against α-glucosidase was observed to be 0.9352 ± 0.0856 µM, 3.11-fold higher than acarbose. In vivo studies were conducted on diabetic rats and plasma glucose levels were estimated by HPLC. Collectively, our findings suggest that MGN-loaded nanosponges may be beneficial in the treatment of diabetes since they prolong the antidiabetic response in plasma and improve patient compliance by slowly releasing MGN and requiring less frequent doses, respectively.  相似文献   

17.
Diabetes mellitus is a disease characterized by persistent high blood glucose levels and accompanied by impaired metabolic pathways. In this study, we used zebrafish to investigate the effect of crocins isolated from Crocus sativus L., on the control of glucose levels and pancreatic β-cells. Embryos were exposed to an aqueous solution of crocins and whole embryo glucose levels were measured at 48 h post-treatment. We showed that the application of crocins reduces zebrafish embryo glucose levels and enhances insulin expression. We also examined whether crocins are implicated in the metabolic pathway of gluconeogenesis. We showed that following a single application of crocins and glucose level reduction, the expression of phosphoenolpyruvate carboxykinase 1 (pck1), a key gene involved in glucose metabolism, is increased. We propose a putative role for the crocins in glucose metabolism and insulin management.  相似文献   

18.
Pancreatic ??-cells are very sensitive to oxidative stress and this might play an important role in ??-cell death in diabetes. In the present study, we investigated whether the brown alga Ecklonia cava has protective effects against high glucose-induced damage in INS-1 pancreatic ??-cells. For that purpose, we prepared an enzymatic hydrolysate from E. cava (EHE) by using the carbohydrase, Celluclast. High-glucose (30?mM) treatment induced glucotoxicity, whereas EHE prevented cells from high glucose-induced damage then restoring cell viability was significantly increased. Furthermore, lipid peroxidation, intracellular reactive oxygen species (ROS) and nitric oxide (NO) were overproduced as the result of the treatment by high glucose; however, these lipid peroxidation, ROS and NO generations were effectively inhibited by addition of EHE in a dose-dependent manner. Moreover, EHE treatment increased activities of antioxidant enzymes including catalase (CAT), superoxide dismutase (SOD), and glutathione peroxidase (GSH-px) in high glucose pretreated INS-1 pancreatic ??-cells. EHE slightly reduced the expression of pro-apoptotic protein Bax induced by high glucose but increased the expression of Bcl-2, an anti-apoptotic protein. These findings indicate that EHE might be used as potential nutraceutical agent which will protect the glucotoxicity caused by hyperglycemia-induced oxidative stress associated with diabetes.  相似文献   

19.
20.
Matrix metalloproteinases (MMPs), key molecules of cancer invasion and metastasis, degrade the extracellular matrix and cell–cell adhesion molecules. MMP-10 plays a crucial role in Helicobacter pylori-induced cell-invasion. The mitogen-activated protein kinase (MAPK) signaling pathway, which activates activator protein-1 (AP-1), is known to mediate MMP expression. Infection with H. pylori, a Gram-negative bacterium, is associated with gastric cancer development. A toxic factor induced by H. pylori infection is reactive oxygen species (ROS), which activate MAPK signaling in gastric epithelial cells. Peroxisome proliferator-activated receptor γ (PPAR-γ) mediates the expression of antioxidant enzymes including catalase. β-Carotene, a red-orange pigment, exerts antioxidant and anti-inflammatory properties. We aimed to investigate whether β-carotene inhibits H. pylori-induced MMP expression and cell invasion in gastric epithelial AGS (gastric adenocarcinoma) cells. We found that H. pylori induced MMP-10 expression and increased cell invasion via the activation of MAPKs and AP-1 in gastric epithelial cells. Specific inhibitors of MAPKs suppressed H. pylori-induced MMP-10 expression, suggesting that H. pylori induces MMP-10 expression through MAPKs. β-Carotene inhibited the H. pylori-induced activation of MAPKs and AP-1, expression of MMP-10, and cell invasion. Additionally, it promoted the expression of PPAR-γ and catalase, which reduced ROS levels in H. pylori-infected cells. In conclusion, β-carotene exerts an inhibitory effect on MAPK-mediated MMP-10 expression and cell invasion by increasing PPAR-γ-mediated catalase expression and reducing ROS levels in H. pylori-infected gastric epithelial cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号