首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This study presents the construction and dielectric properties investigation of atomic-layer-deposition Al2O3/TiO2/HfO2 dielectric-film-based metal–insulator–metal (MIM) capacitors. The influence of the dielectric layer material and thickness on the performance of MIM capacitors are also systematically investigated. The morphology and surface roughness of dielectric films for different materials and thicknesses are analyzed via atomic force microscopy (AFM). Among them, the 25 nm Al2O3-based dielectric capacitor exhibits superior comprehensive electrical performance, including a high capacitance density of 7.89 fF·µm−2, desirable breakdown voltage and leakage current of about 12 V and 1.4 × 10−10 A·cm−2, and quadratic voltage coefficient of 303.6 ppm·V−2. Simultaneously, the fabricated capacitor indicates desirable stability in terms of frequency and bias voltage (at 1 MHz), with the corresponding slight capacitance density variation of about 0.52 fF·µm−2 and 0.25 fF·µm−2. Furthermore, the mechanism of the variation in capacitance density and leakage current might be attributed to the Poole–Frenkel emission and charge-trapping effect of the high-k materials. All these results indicate potential applications in integrated passive devices.  相似文献   

2.
Graphene, in spite of exceptional physio-chemical properties, still faces great limitations in its use and industrial scale-up as highly selective membranes (enhanced ratio of proton conductivity to fuel cross-over) in liquid alcohol fuel cells (LAFCs), due to complexity and high cost of prevailing production methods. To resolve these issues, a facile, low-cost and eco-friendly approach of liquid phase exfoliation (bath sonication) of graphite to obtain graphene and spray depositing the prepared graphene flakes, above anode catalyst layer (near the membrane in the membrane electrode assembly (MEA)) as barrier layer at different weight percentages relative to the base membrane Nafion 115 was utilized in this work. The 5 wt.% nano-graphene layer raises 1 M methanol/oxygen fuel cell power density by 38% to 91 mW·cm−2, compared to standard membrane electrode assembly (MEA) performance of 63 mW·cm−2, owing to less methanol crossover with mild decrease in proton conductivity, showing negligible voltage decays over 20 h of operation at 50 mA·cm−2. Overall, this work opens three prominent favorable prospects: exploring the usage of nano-materials prepared by liquid phase exfoliation approach, their effective usage in ion-transport membrane region of MEA and enhancing fuel cell power performance.  相似文献   

3.
Solid electrolytes hold promise in safely enabling high-energy metallic sodium (Na) anodes. However, the poor Na‖solid electrolyte interfacial contact can induce Na dendrite growth and limit Na utilization, plaguing the rate performance and energy density of current solid-state Na-metal batteries (SSSMBs). Herein, a simple and scalable Pb/C interlayer strategy is introduced to regulate the surface chemistry and improve Na wettability of Na3Zr2Si2PO12 (NZSP) solid electrolyte. The resulting NZSP exhibits a perfect Na wettability (0° contact angle) at a record-low temperature of 120 °C, a negligible room-temperature Na‖NZSP interfacial resistance of 1.5 Ω cm2, along with an ultralong cycle life of over 1800 h under 0.5 mA cm−2/0.5 mA h cm−2 symmetric cell cycling at 55 °C. Furthermore, we unprecedentedly demonstrate in situ fabrication of weight-controlled Na anodes and explore the effect of the negative/positive capacity (N/P) ratio on the cyclability of SSSMBs. Both solid-state Na3V2(PO4)3 and S full cells show superior electrochemical performance at an optimal N/P ratio of 40.0. The Pb/C interlayer modification demonstrates dual functions of stabilizing the anode interface and improving Na utilization, making it a general strategy for implementing Na metal anodes in practical SSSMBs.

A novel Pb/C interlayer is introduced on Na3Zr2Si2PO12 solid electrolyte, which offers perfect Na wettability, negates interfacial resistance, and allows in situ fabrication of “Na-less” anodes for stable solid-state Na-metal batteries.  相似文献   

4.
We explored the effects of different light intensities and photoperiods on the growth, nutritional quality and antioxidant properties of two Brassicaceae microgreens (cabbage Brassica oleracea L. and Chinese kale Brassica alboglabra Bailey). There were two experiments: (1) four photosynthetic photon flux densities (PPFD) of 30, 50, 70 or 90 μmoL·m−2·s−1 with red:blue:green = 1:1:1 light-emitting diodes (LEDs); (2) five photoperiods of 12, 14, 16, 18 or 20 h·d−1. With the increase of light intensity, the hypocotyl length of cabbage and Chinese kale microgreens shortened. PPFD of 90 μmol·m−2·s−1 was beneficial to improve the nutritional quality of cabbage microgreens, which had higher contents of chlorophyll, carotenoids, soluble sugar, soluble protein and vitamin C, as well as increased antioxidant capacity. The optimal PPFD for Chinese kale microgreens was 70 μmol·m−2·s−1. Increasing light intensity could increase the antioxidant capacity of cabbage and Chinese kale microgreens, while not significantly affecting glucosinolate (GS) content. The dry and fresh weight of cabbage and Chinese kale microgreens were maximized with a 14-h·d−1 photoperiod. The chlorophyll, carotenoid and soluble protein content in cabbage and Chinese kale microgreens were highest for a 16-h·d−1 photoperiod. The lowest total GS content was found in cabbage microgreens under a 12-h·d−1 photoperiod and in Chinese kale microgreens under 16-h·d−1 photoperiod. In conclusion, the photoperiod of 14~16 h·d−1, and 90 μmol·m−2·s−1 and 70 μmol·m−2·s−1 PPFD for cabbage and Chinese kale microgreens, respectively, were optimal for cultivation.  相似文献   

5.
The effects of supplemental UV-A (385 nm) period and UV-A intensity for 5 days before harvest (DBH) on growth, antioxidants, antioxidant capacity, and glucosinolates contents in Chinese kale (Brassica oleracea var. alboglabra Bailey) were studied in plant factory. In the experiment of the UV-A period, three treatments were designed with 10 W·m−2 UV-A supplement, T1(5 DBH), T2 (10 DBH), and no supplemental UV-A as control. In the experiment of UV-A intensity, four treatments were designed with 5 DBH, control (0 W·m−2), 5 w (5 W·m−2), 10 w (10 W·m−2), and 15 w (15 W·m−2). The growth light is as follows: 250 μmol·m−2·s−1; red light: white light = 2:3; photoperiod: 12/12. The growth and quality of Chinese kale were improved by supplemental UV-A LED. The plant height, stem diameter, and biomass of Chinese kale were the highest in the 5 W·m−2 treatment for 5 DBH. The contents of chlorophyll a, chlorophyll b, and total chlorophyll were only highly increased by 5 W·m−2 UV-A for 5 DBH, while there was no significant difference in the content of carotenoid among all treatments. The contents of soluble sugar and free amino acid were higher only under 10 DBH treatments than in control. The contents of total phenolic and total antioxidant capacity were the highest in 5 W·m−2 treatment for 5 DBH. There was a significant positive correlation between total phenolic content and DPPH and FRAP value. After 5 DBH treatments, the percentages and contents of total aliphatic glucosinolates, sinigrin (SIN), gluconapin (GNA), and glucobrassicanapin (GBN) were highly increased, while the percentages and contents of glucobrassicin (GBS), 4-methoxyglucobrassicin (4-MGBS), and Progoitrin (PRO) were significantly decreased, especially under 10 W·m−2 treatment. Our results show that UV-A LED supplements could improve the growth and quality of Chinese kale, and 5 W·m−2 UV-A LED with 5 DBH might be feasible for Chinese kale growth, and 10 W·m−2 UV-A LED with 5 DBH was better for aliphatic glucosinolates accumulation in Chinese kale.  相似文献   

6.
Highly porous activated carbons were synthesized via the mechanochemical salt-templating method using both sustainable precursors and sustainable chemical activators. Tannic acid is a polyphenolic compound derived from biomass, which, together with urea, can serve as a low-cost, environmentally friendly precursor for the preparation of efficient N-doped carbons. The use of various organic and inorganic salts as activating agents afforded carbons with diverse structural and physicochemical characteristics, e.g., their specific surface areas ranged from 1190 m2·g−1 to 3060 m2·g−1. Coupling the salt-templating method and chemical activation with potassium oxalate appeared to be an efficient strategy for the synthesis of a highly porous carbon with a specific surface area of 3060 m2·g−1, a large total pore volume of 3.07 cm3·g−1 and high H2 and CO2 adsorption capacities of 13.2 mmol·g−1 at −196 °C and 4.7 mmol·g−1 at 0 °C, respectively. The most microporous carbon from the series exhibited a CO2 uptake capacity as high as 6.4 mmol·g−1 at 1 bar and 0 °C. Moreover, these samples showed exceptionally high thermal stability. Such activated carbons obtained from readily available sustainable precursors and activators are attractive for several applications in adsorption and catalysis.  相似文献   

7.
This study was performed to investigate the effects of different supplemental light spectra and doses (duration and illuminance) on the essential oil of basil (Ocimum basilicum L.) cultivated in the net-house in Vietnam during four months. Ten samples of basil aerial parts were hydrodistilled to obtain essential oils which had the average yields from 0.88 to 1.30% (v/w, dry). The oils analyzed using GC-FID and GC-MS showed that the main component was methyl chavicol (87.4–90.6%) with the highest values found in the oils of basil under lighting conditions of 6 h/day and 150–200 µmol·m−2·s−1. Additional lighting conditions caused the significant differences (p < 0.001) in basil biomass and oil production with the highest values found in the oils of basil under two conditions of (1) 71% Red: 20% Blue: 9.0% UVA in at 120 μmol·m−2·s−1 in 6 h/day and (2) 43.5% Red: 43.5% Blue: 8.0% Green: 5.0% Far-Red at 100 μmol·m−2·s−1 in 6 h/day. The oils of basil in some formulas showed weak inhibitory effects on only the Bacillus subtilis strain. Different light spectra affect the biomass and essential oil production of basil, as well as the concentrations of the major components in the oil.  相似文献   

8.
In this paper, the rate coefficients (k) and activation energies (Ea) for SiCl4, SiHCl3, and Si(CH3)2(CH2Cl)Cl molecules in the gas phase were measured using the pulsed Townsend technique. The experiment was performed in the temperature range of 298–378 K, and carbon dioxide was used as a buffer gas. The obtained k depended on temperature in accordance with the Arrhenius equation. From the fit to the experimental data points with function described by the Arrhenius equation, the activation energies (Ea) were determined. The obtained k values at 298 K are equal to (5.18 ± 0.22) × 10−10 cm3·s−1, (3.98 ± 1.8) × 10−9 cm3·s−1 and (8.46 ± 0.23) × 10−11 cm3·s−1 and Ea values were equal to 0.25 ± 0.01 eV, 0.20 ± 0.01 eV, and 0.27 ± 0.01 eV for SiHCl3, SiCl4, and Si(CH3)2(CH2Cl)Cl, respectively. The linear relation between rate coefficients and activation energies for chlorosilanes was demonstrated. The DFT/B3LYP level coupled with the 6-31G(d) basis sets method was used for calculations of the geometry change associated with negative ion formation for simple chlorosilanes. The relationship between these changes and the polarizability of the attaching center (αcentre) was found. Additionally, the calculated adiabatic electron affinities (AEA) are related to the αcentre.  相似文献   

9.
This work proposes a facile methodology for producing porous biochar material (ABC) from açaí kernel residue, produced by chemical impregnation with ZnCl2 (1:1) and pyrolysis at 650.0 °C. The characterization was achieved using several techniques, and the biochar material was employed as an adsorbent to remove catechol. The results show that ABC carbon has hydrophilic properties. The specific surface area and total pore volume are 1315 m2·g−1 and 0.7038 cm3·g−1, respectively. FTIR revealed the presence of oxygenated groups, which can influence catechol adsorption. The TGA/DTG indicated that the sample is thermally stable even at 580 °C. Adsorption studies showed that equilibrium was achieved in <50 min and the Avrami kinetic model best fits the experimental data, while Freundlich was observed to be the best-fitted isotherm model. Catechol adsorption on ABC biochar is governed by van der Waals forces and microporous and mesoporous filling mechanisms. The Qmax is 339.5 mg·g−1 (40 °C) with 98.36% removal of simulated effluent, showing that açaí kernel is excellent biomass to prepare good biochar that can be efficiently used to treat real industrial effluents.  相似文献   

10.
Silica aerogel composites with recycled tire rubber have been synthesized and evaluated for their potential use for thermal protection in buildings. The present work describes for the first time the preparation of silica-based aerogel composites containing recycled rubber tires reinforced with polyvinyl butyral (PVB) by hot pressing. The developed composite was extensively characterized regarding its physical, morphological, thermal and mechanical features, and the results showed their properties were relevant, leading to composites with different properties/performances. The obtained bulk density values were satisfactory, down to 474 kg·m−3, and very good thermal properties were achieved, namely, thermal conductivity as low as 55 mW·m−1·K−1 for composites with silica aerogel, recycled tire rubber and PVB. The most promising composites were those based on low bulk density and thermal conductivity values, and they were thermally stable, indicating their suitability for thermal insulation applications.  相似文献   

11.
We have experimentally studied the influence of pulsed laser deposition parameters on the morphological and electrophysical parameters of vanadium oxide films. It is shown that an increase in the number of laser pulses from 10,000 to 60,000 and an oxygen pressure from 3 × 10−4 Torr to 3 × 10−2 Torr makes it possible to form vanadium oxide films with a thickness from 22.3 ± 4.4 nm to 131.7 ± 14.4 nm, a surface roughness from 7.8 ± 1.1 nm to 37.1 ± 11.2 nm, electron concentration from (0.32 ± 0.07) × 1017 cm−3 to (42.64 ± 4.46) × 1017 cm−3, electron mobility from 0.25 ± 0.03 cm2/(V·s) to 7.12 ± 1.32 cm2/(V·s), and resistivity from 6.32 ± 2.21 Ω·cm to 723.74 ± 89.21 Ω·cm. The regimes at which vanadium oxide films with a thickness of 22.3 ± 4.4 nm, a roughness of 7.8 ± 1.1 nm, and a resistivity of 6.32 ± 2.21 Ω·cm are obtained for their potential use in the fabrication of ReRAM neuromorphic systems. It is shown that a 22.3 ± 4.4 nm thick vanadium oxide film has the bipolar effect of resistive switching. The resistance in the high state was (89.42 ± 32.37) × 106 Ω, the resistance in the low state was equal to (6.34 ± 2.34) × 103 Ω, and the ratio RHRS/RLRS was about 14,104. The results can be used in the manufacture of a new generation of micro- and nanoelectronics elements to create ReRAM of neuromorphic systems based on vanadium oxide thin films.  相似文献   

12.
To efficiently convert and utilize intermittent solar energy, a novel solar-driven ethanol steam reforming (ESR) system integrated with a membrane reactor is proposed. It has the potential to convert low-grade solar thermal energy into high energy level chemical energy. Driven by chemical potential, hydrogen permeation membranes (HPM) can separate the generated hydrogen and shift the ESR equilibrium forward to increase conversion and thermodynamic efficiency. The thermodynamic and environmental performances are analyzed via numerical simulation under a reaction temperature range of 100–400 °C with permeate pressures of 0.01–0.75 bar. The highest theoretical conversion rate is 98.3% at 100 °C and 0.01 bar, while the highest first-law efficiency, solar-to-fuel efficiency, and exergy efficiency are 82.3%, 45.3%, and 70.4% at 215 °C and 0.20 bar. The standard coal saving rate (SCSR) and carbon dioxide reduction rate (CDRR) are maximums of 101 g·m−2·h−1 and 247 g·m−2·h−1 at 200 °C and 0.20 bar with a hydrogen generation rate of 22.4 mol·m−2·h−1. This study illustrates the feasibility of solar-driven ESR integrated with a membrane reactor and distinguishes a novel approach for distributed hydrogen generation and solar energy utilization and upgradation.  相似文献   

13.
In this study, a new method for economical utilization of coffee grounds was developed and tested. The resulting materials were characterized by proximate and elemental analyses, thermogravimetric analysis (TGA), Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), and N2 adsorption–desorption at 77 K. The experimental data show bio-oil yields reaching 42.3%. The optimal activated carbon was obtained under vacuum pyrolysis self-activation at an operating temperature of 450 °C, an activation temperature of 600 °C, an activation time of 30 min, and an impregnation ratio with phosphoric acid of 150 wt.%. Under these conditions, the yield of activated carbon reached 27.4% with a BET surface area of 1420 m2·g−1, an average pore size of 2.1 nm, a total pore volume of 0.747 cm3·g−1, and a t-Plot micropore volume of 0.428 cm3·g−1. In addition, the surface of activated carbon looked relatively rough, containing mesopores and micropores with large amounts of corrosion pits.  相似文献   

14.
Co-crystallization of the prominent Fe(ii) spin-crossover (SCO) cation, [Fe(3-bpp)2]2+ (3-bpp = 2,6-bis(pyrazol-3-yl)pyridine), with a fractionally charged TCNQδ radical anion has afforded a hybrid complex [Fe(3-bpp)2](TCNQ)3·5MeCN (1·5MeCN, where δ = −0.67). The partially desolvated material shows semiconducting behavior, with the room temperature conductivity σRT = 3.1 × 10−3 S cm−1, and weak modulation of conducting properties in the region of the spin transition. The complete desolvation, however, results in the loss of hysteretic behavior and a very gradual SCO that spans the temperature range of 200 K. A related complex with integer-charged TCNQ anions, [Fe(3-bpp)2](TCNQ)2·3MeCN (2·3MeCN), readily loses the interstitial solvent to afford desolvated complex 2 that undergoes an abrupt and hysteretic spin transition centered at 106 K, with an 11 K thermal hysteresis. Complex 2 also exhibits a temperature-induced excited spin-state trapping (TIESST) effect, upon which a metastable high-spin state is trapped by flash-cooling from room temperature to 10 K. Heating above 85 K restores the ground-state low-spin configuration. An approach to improve the structural stability of such complexes is demonstrated by using a related ligand 2,6-bis(benzimidazol-2′-yl)pyridine (bzimpy) to obtain [Fe(bzimpy)2](TCNQ)6·2Me2CO (4) and [Fe(bzimpy)2](TCNQ)5·5MeCN (5), both of which exist as LS complexes up to 400 K and exhibit semiconducting behavior, with σRT = 9.1 × 10−2 S cm−1 and 1.8 × 10−3 S cm−1, respectively.

Co-crystallization of the cationic complex [Fe(3-bpp)2]2+ with fractionally charged TCNQδ anions (0 < δ < 1) affords semiconducting spin-crossover (SCO) materials. The abruptness of SCO is strongly dependent on the interstitial solvent content.  相似文献   

15.
An alkylamide-substituted (−NHCOC10H21) hydrogen-bonded dibenzo[18]crown-6 derivative (1) was prepared to stabilise the ionic channel structure in a discotic hexagonal columnar (Colh) liquid crystal. The introduction of simple M+X salts such as Na+PF6 and K+I into the ionic channel of 1 enhanced the ionic conductivity of the Colh phase of the M+·(1)·X salts, with the highest ionic conductivity reaching ∼10−6 S cm−1 for K+·(1)·I and Na+·(1)·PF6 at 460 K, which was approximately 5 orders of magnitude higher than that of 1. The introduction of non-ferroelectric 1 into the ferroelectric N,N′,N′′-tri(tetradecyl)-1,3,5-benzenetricarboxamide (3BC) elicited a ferroelectric response from the mixed Colh phase of (3BC)x(1)1−x with x = 0.9 and 0.8. The further doping of M+X into the ferroelectric Colh phase of (3BC)0.9(1)0.1 enhanced the ferroelectric polarisation assisted by ion displacement in the half-filled ionic channel for the vacant dibenzo[18]crown-6 of (3BC)0.9[(M+)0.5·(1)·(X)0.5]0.1.

An alkylamide-substituted (−NHCOC10H21) hydrogen-bonded dibenzo[18]crown-6 derivative (1) was prepared to stabilise the ionic channel structure in a discotic hexagonal columnar (Colh) liquid crystal.  相似文献   

16.
Enniatins are mycotoxins produced by Fusarium species contaminating cereals and various agricultural commodities. The co-occurrence of these mycotoxins in large quantities with other mycotoxins such as trichothecenes and the possible synergies in toxicity could lead to serious food safety problems. Using the agar dilution method, Ammoides pusilla was selected among eight Tunisian plants for the antifungal potential of its essential oil (EO) on Fusarium avenaceum mycelial growth and its production of enniatins. Two EO batches were produced and analyzed by GC/MS-MS. Their activities were measured using both contact assays and fumigant tests (estimated IC50 were 0.1 µL·mL−1 and 7.6 µL·L−1, respectively). The A. pusilla EOs and their volatiles inhibited the germination of spores and the mycelial growth, showing a fungistatic but not fungicidal activity. The accumulation of enniatins was also significantly reduced (estimated IC50 were 0.05 µL·mL−1 for the contact assays and 4.2 µL·L−1 for the fumigation assays). The most active batch of EO was richer in thymol, the main volatile compound found. Thymol used as fumigant showed a potent fungistatic activity but not a significant antimycotoxigenic activity. Overall, our data demonstrated the bioactivity of A. pusilla EO and its high potential to control F. avenaceum and its enniatins production in agricultural commodities.  相似文献   

17.
The drugs delivery system in the treatment of diseases has advantages such as reduced toxicity, increased availability of the drug, etc. Therefore, studies of the supramolecular interactions between local anesthetics (LAs) butamben (BTB) or ropivacaine (RVC) complexed with 2-hydroxypropyl-β-cyclodextrin (HP-βCD) and carried in Stealth liposomal (SL) are performed. 1H-NMR nuclear magnetic resonance (DOSY and STD) were used as the main tools. The displacements observed in the 1H-NMR presented the complexion between LAs and HP-βCD. The diffusion coefficients of free BTB and RVC were 7.70 × 10−10 m2 s−1 and 4.07 × 10−10 m2 s−1, and in the complex with HP-βCD were 1.90 × 10−10 m2 s−1 and 3.64 × 10−10 m2 s−1, respectively, which indicate a strong interaction between the BTB molecule and HP-βCD (98.3% molar fraction and Ka = 72.279 L/mol). With STD-NMR, the encapsulation of the BTB/HP-βCD and RVC/HP-βCD in SL vesicles was proven. Beyond the saturation transfer to the LAs, there is the magnetization transfer to the hydrogens of HP-βCD. BTB and RVC have already been studied in normal liposome systems; however, little is known of their behavior in SL.  相似文献   

18.
Reaction of 2,2′-bipyridine (2,2′-bipy) or 1,10-phenantroline (phen) with [Mn(Piv)2(EtOH)]n led to the formation of binuclear complexes [Mn2(Piv)4L2] (L = 2,2′-bipy (1), phen (2); Piv is the anion of pivalic acid). Oxidation of 1 or 2 by air oxygen resulted in the formation of tetranuclear MnII/III complexes [Mn4O2(Piv)6L2] (L = 2,2′-bipy (3), phen (4)). The hexanuclear complex [Mn6(OH)2(Piv)10(pym)4] (5) was formed in the reaction of [Mn(Piv)2(EtOH)]n with pyrimidine (pym), while oxidation of 5 produced the coordination polymer [Mn6O2(Piv)10(pym)2]n (6). Use of pyrazine (pz) instead of pyrimidine led to the 2D-coordination polymer [Mn4(OH)(Piv)72-pz)2]n (7). Interaction of [Mn(Piv)2(EtOH)]n with FeCl3 resulted in the formation of the hexanuclear complex [MnII4FeIII2O2(Piv)10(MeCN)2(HPiv)2] (8). The reactions of [MnFe2O(OAc)6(H2O)3] with 4,4′-bipyridine (4,4′-bipy) or trans-1,2-(4-pyridyl)ethylene (bpe) led to the formation of 1D-polymers [MnFe2O(OAc)6L2]n·2nDMF, where L = 4,4′-bipy (9·2DMF), bpe (10·2DMF) and [MnFe2O(OAc)6(bpe)(DMF)]n·3.5nDMF (11·3.5DMF). All complexes were characterized by single-crystal X-ray diffraction. Desolvation of 11·3.5DMF led to a collapse of the porous crystal lattice that was confirmed by PXRD and N2 sorption measurements, while alcohol adsorption led to porous structure restoration. Weak antiferromagnetic exchange was found in the case of binuclear MnII complexes (JMn-Mn = −1.03 cm−1 for 1 and 2). According to magnetic data analysis (JMn-Mn = −(2.69 ÷ 0.42) cm−1) and DFT calculations (JMn-Mn = −(6.9 ÷ 0.9) cm−1) weak antiferromagnetic coupling between MnII ions also occurred in the tetranuclear {Mn4(OH)(Piv)7} unit of the 2D polymer 7. In contrast, strong antiferromagnetic coupling was found in oxo-bridged trinuclear fragment {MnFe2O(OAc)6} in 11·3.5DMF (JFe-Fe = −57.8 cm−1, JFe-Mn = −20.12 cm−1).  相似文献   

19.
This paper studies the degradation of methiocarb, a highly hazardous pesticide found in waters and wastewaters, through an electro-Fenton process, using a boron-doped diamond anode and a carbon felt cathode; and evaluates its potential to reduce toxicity towards the model organism Daphnia magna. The influence of applied current density and type and concentration of added iron source, Fe2(SO4)3·5H2O or FeCl3·6H2O, is assessed in the degradation experiments of methiocarb aqueous solutions. The experimental results show that electro-Fenton can be successfully used to degrade methiocarb and to reduce its high toxicity towards D. magna. Total methiocarb removal is achieved at the applied electric charge of 90 C, and a 450× reduction in the acute toxicity towards D. magna, on average, from approximately 900 toxic units to 2 toxic units, is observed at the end of the experiments. No significant differences are found between the two iron sources studied. At the lowest applied anodic current density, 12.5 A m−2, an increase in iron concentration led to lower methiocarb removal rates, but the opposite is found at the highest applied current densities. The highest organic carbon removal is obtained at the lowest applied current density and added iron concentration.  相似文献   

20.
Four new compounds of formulas [Cu(hfac)2(L)] (1), [Ni(hfac)2(L)] (2), [{Cu(hfac)2}2(µ-L)]·2CH3OH (3) and [{Ni(hfac)2}2(µ-L)]·2CH3CN (4) [Hhfac = hexafluoroacetylacetone and L = 3,6-bis(picolylamino)-1,2,4,5-tetrazine] have been prepared and their structures determined by X-ray diffraction on single crystals. Compounds 1 and 2 are isostructural mononuclear complexes where the metal ions [copper(II) (1) and nickel(II) (2)] are six-coordinated in distorted octahedral MN2O4 surroundings which are built by two bidentate hfac ligands plus another bidentate L molecule. This last ligand coordinates to the metal ions through the nitrogen atoms of the picolylamine fragment. Compounds 3 and 4 are centrosymmetric homodinuclear compounds where two bidentate hfac units are the bidentate capping ligands at each metal center and a bis-bidentate L molecule acts as a bridge. The values of the intramolecular metal···metal separation are 7.97 (3) and 7.82 Å (4). Static (dc) magnetic susceptibility measurements were carried out for polycrystalline samples 1–4 in the temperature range 1.9–300 K. Curie law behaviors were observed for 1 and 2, the downturn of χMT in the low temperature region for 2 being due to the zero-field splitting of the nickel(II) ion. Very weak [J = −0.247(2) cm−1] and relatively weak intramolecular antiferromagnetic interactions [J = −4.86(2) cm−1] occurred in 3 and 4, respectively (the spin Hamiltonian being defined as H = −JS1·S2). Simple symmetry considerations about the overlap between the magnetic orbitals across the extended bis-bidentate L bridge in 3 and 4 account for their magnetic properties.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号