首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 27 毫秒
1.
[reaction: see text] Herein we report a very simple route that allows the construction of a variety of optically pure azaferrocenyl compounds. The key feature is the preparation of optically pure 2-azaferrocenyl anions, which can serve as precursors for the construction of novel chiral azaferrocenyl complexes.  相似文献   

2.
The reaction of the alpha-carbanion of p-tolyl 2-(trimethylsilyl)ethyl sulfoxide with esters followed by reduction with DIBAL gave alpha-(trimethylsilyl)methyl-beta-hydroxysulfoxides with high stereoselectivity. The stereoselective reaction was demonstrated to proceed through a dynamic kinetic resolution pathway via a six-membered cyclic transition state involving Si-O interaction. These reactions provide a convenient route for the synthesis of optically pure allylic alcohols.  相似文献   

3.
An efficient method for a stereoselective synthesis of optically pure N-Boc-3-arylpiperazines has been developed. After optimization of the protecting group strategy and experimental conditions, compounds were obtained via a highly stereoselective synthesis in up to 45% overall yield. This is a practical route to optically pure piperazines for medicinal chemistry.  相似文献   

4.
The preparation of a variety of optically pure peptides containing an N-1H,1H-perfluoroalkyl label on a selected backbone amide bond is now possible.  相似文献   

5.
With the fast development of the biodiesel industry, the byproduced crude glycerol becomes excessive due to the limited demand for refined glycerol. This article provides a green and efficient route to produce acrylic acid from crude glycerol, which is a promising alternative and complement to the petroleum-based production of acrylic acid due to its economic and environmental benefits. Among all the impurities, only the alkaline metal ions in crude glycerol significantly decreased the yield of acrylic acid. After desalination of the plant crude glycerol with ion-exchange resin to remove the critical impurities, the sequential dehydration and oxidation system gave 86% acrylic acid yield, which was as high as that with pure glycerol. In addition, the system showed good thermal stability and regeneration ability after the reaction with desalted crude glycerol. Both the HPW/Cs–Nb and VMo–SiC catalysts were stable for at least 70 h. The activity and selectivity were well recovered after regeneration at the coke burning temperature of 500°C.  相似文献   

6.
Pullarkat SA  Yi D  Li Y  Tan GK  Leung PH 《Inorganic chemistry》2006,45(18):7455-7463
Alcohol functionalized diphosphine ligands with chirality residing on the carbon backbone were prepared using a novel two-stage asymmetric synthetic methodology from the corresponding terminal alkynols. Under mild conditions, the alkynols, 3-butyn-1-ol and 2-propyn-1-ol, were subjected to direct hydrophosphination to give the corresponding Markovnikov addition products. The phosphine functionalized alkenols thus obtained were subsequently subjected to a second-stage asymmetric hydrophosphination employing an organopalladium complex containing the ortho-metalated (R)-(1-(dimethylamino)ethyl)naphthalene as a chiral auxiliary and reaction promoter. In the reaction that involved 3-diphenylphosphanyl-but-3-en-1-ol, all four possible stereoisomeric products were generated stereoselectively in the ratio of 1:2:4:18. The major isomer was subsequently isolated in appreciable yield in its configurationally pure form and characterized by means of single-crystal X-ray crystallography. The naphthylamine auxiliary could be removed chemoselectively from the template product by treatment with concentrated hydrochloric acid to form the corresponding optically pure neutral complex. Subsequent ligand displacement from the palladium achieved using aqueous potassium cyanide generated the optically pure diphosphine ligand with chirality residing on the carbon backbone in appreciable yield. However, the similar asymmetric hydrophosphination reaction involving 2-diphenylphosphanyl-prop-2-en-1-ol did not exhibit appreciable selectivity.  相似文献   

7.
A stereocontrolled synthetic route to optically pure (?)-(S)-ipsenol ( 1 ), the pheromone of Pityokteines curvidens and various other bark-beetle species is described. Key step of the synthesis is an enantioselective aldol reaction using a chiral titanium–carbohydrate complex (Scheme 1). The carboxylate function of the optically pure β-hydroxy acid 5 thus obtained in mol quantities is then elaborated to the diene moiety by standard methodology (Scheme 2).  相似文献   

8.
A carotenoic acid was used to obtain a long-chain unsaturated lysophosphocholine. The carotenoid lysophosphocholine was synthesized by two methods. The first method resulted in mixtures of regioisomers for each step in the synthetic route. Homo- and heteronuclear 1D and 2D NMR methods were employed to elucidate the structures of the individual isomers and their intermediates. The pure regioisomer [1-(beta-apo-8'-carotenoyl)-2-lyso-glycero-3-phosphocholine] was obtained by a second method, but in low yield. The 1D 1H NMR subtraction spectrum of the mixture and the pure regioisomer was used to interpret the 1H shifts of the unsaturated acyl moieties. The 1H and 13C signals of the acyl chain show characteristic shifts depending on the positions of the choline and the acyl group attached to the glycerol backbone. Therefore, the unsaturated acyl chain signals have diagnostic values for the identification of isomers of unsaturated (lyso)phosphocholines. Chemical shifts and indirect coupling constants are reported for each of the major components of the mixtures. The methods used were 1D (1H, 13C and 31P) and 2D (H,H-COSY, HMBC, HSQC and HETCOR) NMR.  相似文献   

9.
A general, high yielding route to optically pure alkyl 1 N-alkyl and 1 N-acyl substituted imidazolidin-2-one-4(S)-carboxylates, with diverse potential uses in asymmetric synthesis, is reported.  相似文献   

10.
The reaction of glycerol with urea to form glycerol carbonate is mostly reported in the patent literature and to date there have been very few fundamental studies of the reaction mechanism. Furthermore, most previous studies have involved homogeneous catalysts whereas the identification of heterogeneous catalysts for this reaction would be highly beneficial. This is a very attractive reaction that utilises two inexpensive and readily available raw materials in a chemical cycle that overall, results in the chemical fixation of CO(2). This reaction also provides a route to up-grade waste glycerol produced in large quantities during the production of biodiesel. Previous reports are largely based on the utilisation of high concentrations of metal sulfates or oxides, which suffer from low intrinsic activity and selectivity. We have identified heterogeneous catalysts based on gallium, zinc, and gold supported on a range of oxides and the zeolite ZSM-5, which facilitate this reaction. The addition of each component to ZSM-5 leads to an increase in the reaction yield towards glycerol carbonate, but supported gold catalysts display the highest activity. For gold-based catalysts, MgO is the support of choice. Catalysts have been characterised by XRD, TEM, STEM and XPS, and the reaction has been studied with time-on-line analysis of products via a combination of FT-IR spectroscopy, HPLC, (13)C NMR and GC-MS analysis to evaluate the reaction pathway. Our proposed mechanism suggests that glycerol carbonate forms via the cyclization of a 2,3-dihydroxypropyl carbamate and that a subsequent reaction of glycerol carbonate with urea yields the carbamate of glycerol carbonate. Stability and reactivity studies indicate that consecutive reactions of glycerol carbonate can limit the selectivity achieved and reaction conditions can be selected to avoid this. The effect of the catalyst in the proposed mechanism is discussed.  相似文献   

11.
Deracemization, that is, the transformation of a racemate into a single product enantiomer with theoretically 100 % conversion and 100 % ee, is an appealing but also challenging option for asymmetric synthesis. Herein a novel chemo‐enzymatic deracemization concept by a cascade is described: the pathway involves two enantioselective oxidation steps and one non‐stereoselective reduction step, enabling stereoinversion and a simultaneous kinetic resolution. The concept was exemplified for the transformation of rac‐benzylisoquinolines to optically pure (S)‐berbines. The racemic substrates were transformed to optically pure products (ee>97 %) with up to 98 % conversion and up to 88 % yield of isolated product.  相似文献   

12.
Optically pure malolactonate monomers containing biphenyl mesogenic groups with either an ethylene or a hexamethylene spacer were prepared from optically pure malic acid and polymerized with alkylaluminoxane catalysts to form a series of new chiral side chain liquid-crystalline polymers, which contained the chiral centres in the backbone. The mesogenic malolactonate monomers were determined to be optically pure by 1H NMR spectroscopy of the β-lactone complexed with a chiral europium shift reagent. Both the methylaluminoxane and isobutylaluminoxane catalysts gave polymers having bimodal molecular weight distributions, the latter catalyst yielded a larger amount of the higher molecular weight fraction than the former. The polymers showed high optical rotations, high degrees of isotactic stereoregularity, and enantiotropic liquid-crystalline properties, all of which were influenced by the molecular weight distribution. Copolymers of malolactonate monomers with different spacers were also prepared and characterized.  相似文献   

13.
Both antipodes of 2-azido-1-arylethanols were synthesized with excellent optical purity via enzymatic reduction of the corresponding alpha-azidoacetophenone derivatives catalyzed by a recombinant carbonyl reductase from Candida magnoliae ( CMCR) or an alcohol dehydrogenase from Saccharomyces cerevisiae ( Ymr226c). This provides an effective route to this class of important compounds in optically pure form. ( S)-2-Azido-1-( p-chlorophenyl)ethanols reacted with alkynes employing click chemistry to afford high yields of optically pure triazole-containing beta-adrenergic receptor blocker analogues with potential biological activity.  相似文献   

14.
A short, asymmetric synthesis of the 1,2,9,9a-tetrahydrocyclopropa[c]benzo[e]indol-4-one (CBI) analogue of the CC-1065 and duocarmycin DNA alkylation subunits is described. Treatment of iodo-epoxide 5, prepared by late-stage alkylation of 4 with (S)-glycidal-3-nosylate, with EtMgBr at room temperature directly provides the optically pure alcohol 6 in 87% yield (99% ee) derived from selective metal-halogen exchange and subsequent regioselective intramolecular 6-endo-tet cyclization. The use of MeMgBr or i-PrMgBr also provides the product in high yields (82-87%), but requires larger amounts of the Grignard reagent to effect metal-halogen exchange and cyclization. Direct transannular spirocyclization of 7 following O-debenzylation of 6 provides N-Boc-CBI. This approach represents the most efficient (9-steps, 31% overall) and effective (99% ee) route to the optically pure CBI alkylation subunit yet described.  相似文献   

15.
《Tetrahedron》1988,44(15):4747-4756
The use of chiral organoaluminum reagent as a catalyst to resolve simple ketoepoxides is explored. The optically pure ketoepoxide 10 was recovered after 80% conversion. The recovered pure epoxide is a useful chiral building block in the synthesis of chiral terpenes. The method applies for the short asymmetric synthesis of the juvenile hormone by the synthetic route which depends on the palladium-catalyzed coupling process.  相似文献   

16.
A high-resolution calorimetric spectroscopy study has been performed on pure glycerol and colloidal dispersions of an aerosil gel in glycerol covering a wide range of temperatures from 300 to 380 K, deep in the liquid phase of glycerol. The colloidal glycerol+aerosil samples with 0.07, 0.14, and 0.32 g of silica per cm3 of glycerol reveal activated energy (thermal) dynamics at temperatures well above the Tg of the pure glycerol. The onset of these dynamics appears to be due to the frustration or pinning imposed by the silica gel on the glycerol liquid and is apparently a long-range, cooperative phenomena. Since this behavior begins to manifest itself at relatively low silica densities (large mean void length compared to the size of a glycerol molecule) and speeds up with increasing density, these induced dynamics are likely due to a coupling between the flexible aerosil gel and large groups of glycerol molecules mediated by mutual hydrogen bonding. This is supported by the lack of such thermal dynamics in pure aerosil gels, pure glycerol, or aerosil gels dispersed in a non-glass-forming, non-hydrogen-bonding, liquid crystal under nearly identical experimental conditions. The study of such frustrated colloids may provide a unique avenue for illuminating the physics of glasses.  相似文献   

17.
The preparation of the optically pure tritertiary phosphine (RRR)-MeSi(CH2P(t-Bu)Ph)3 (2) is reported. The route followed involves deprotonation of optically pure (R)-P(BH3)Me(t-Bu)PH (2) the reaction of the resulting carbanion with MeSiCl3, followed by removal with morpholine of the BH3-protecting groups from the triertiary phosphine-borane 3 . The latter's X-ray crystal structure and that of [Rh(NBD)((RRR)- 1 ]TOf)( 4 ), are also rported. Furthermore, it is shown that the separation of the racemic phosphine-borane 2 can be conveniently carried out using medium-pressure liquid chromatgrapy with cellulose-riacetate as a chiral stationary phase.  相似文献   

18.
It is well known that alcohols can have strong effects on protein structures. For example, monohydric methanol and ethanol normally denature, whereas polyhydric glycol and glycerol protect, protein structures. In a recent combined theoretical and NMR experimental study, we showed that molecular dynamics simulations can be effectively used to understand the molecular mechanism of methanol denaturing protein. In this study, we used molecular dynamics simulations to investigate how alcohols with varied hydrophobicity and different numbers of hydrophilic groups (hydroxyl groups) exert effects on the structure of the model polypeptide, BBA5. First, we showed that methanol and trifluoroethanol (TFE) but not glycol or glycerol disrupt hydrophobic interactions. The latter two alcohols instead protect the assembly of the α- and β-domains of the polypeptide. Second, all four alcohols were shown to generally increase the stability of secondary structures, as revealed by the increased number of backbone hydrogen bonds formed in alcohol/water solutions compared to that in pure water, although individual hydrogen bonds can be weakened by certain alcohols, such as TFE. The two monohydric alcohols, methanol and TFE, display apparently different sequence-dependence in affecting the backbone hydrogen bond stability: methanol tends to enhance the stability of backbone hydrogen bonds of which the carbonyl groups are from polar residues, whereas TFE tends to stabilize those involving non-polar residues. These results demonstrated that subtle differences in the solution environment could have distinct consequences on protein structures.  相似文献   

19.
Enantiomeric syntheses of (-)-homopipecolic acid and (-)-pelletierine have been achieved by chiral resolution of tropanol followed by Baeyer-Villiger oxidation. The methodology provides a practical route for the synthesis of optically pure piperidines.  相似文献   

20.
A stereodivergent synthetic route has been developed to make the optically pure anti- and syn-beta-substituted cysteine and serine derivatives. In this approach, the key intermediates, > 94% enantiomerically pure cyclic sulfates 3 and aziridines 7, were prepared from alpha,beta-unsaturated esters 1, employing the Sharpless asymmetric dihydroxylation. The high regio- and stereoselective ring-opening reactions of cyclic sulfates and aziridines provided enantiomerically pure beta-substituted cysteine and serine derivatives.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号