首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The species Trattinnickia rhoifolia Willd, (T. rhoifolia), which belongs to the Burseraceae family, is widely used in ethnopharmacological cultural practices by traditional Amazonian people for anti-inflammatory purposes, sometimes as their only therapeutic resource. Although it is used in teas, infusions, macerations and in food, the species is still unexplored in regard to its pharmacophoric potential and chemical profile. Therefore, the aim of this study was to conduct a phytochemical characterization of the hydroethanolic extract of T. rhoifolia leaves (HELTr) and to evaluate the acute toxicity and anti-inflammatory activity of this species using zebrafish (Danio rerio). The extract was analyzed by gas chromatography–mass spectrometry (GC-MS). The evaluation of the acute toxicity of the HELTr in adult zebrafish was determined using the limit test (2000 mg/kg), with behavioral and histopathological evaluations, in addition to the analysis of the anti-inflammatory potential of HELTr in carrageenan-induced abdominal edema, followed by the use of the computational method of molecular docking. The phytochemical profile of the species is chemically diverse, suggesting the presence of the fatty acids, ester, alcohol and benzoic acid classes, including propanoic acid, ethyl ester and hexadecanoic acid. In the studies of zebrafish performed according to the index of histopathological changes (IHC), the HELTr did not demonstrate toxicity in the behavioral and histopathological assessments, since the vital organs remained unchanged. Carrageenan-induced abdominal edema was significantly reduced at all HELTr doses (100, 200 and 500 mg/kg) in relation to the negative control, dimethyl sulfoxide (DMSO), while the 200 mg/kg dose showed significant anti-inflammatory activity in relation to the positive control (indomethacin). With these activities being confirmed by molecular docking studies, they showed a good profile for the inhibition of the enzyme Cyclooxygenase-2 (COX-2), as the interactions established at the sites of the receptors used in the docking study were similar to the controls (RCX, IMN and CEL). Therefore, the HELTr has an acceptable degree of safety for acute toxicity, defined in the analysis of behavioral changes, mortality and histopathology, with a significant anti-inflammatory action in zebrafish at all doses, which demonstrates the high pharmacophoric potential of the species. These results may direct future applications and drug development but still require further elucidation.  相似文献   

2.
A series of L-serine amides of antioxidant acids, such as Trolox, (E)-3-(3,5-di-tert-butyl-4-hydroxyphenyl)acrylic acid (phenolic derivative of cinnamic acid) and 3,5-di-tert-butyl-4-hydroxybenzoic acid (structurally similar to butylated hydroxytoluene), was synthesized. The hydroxy group of serine was esterified with two classical NSAIDs, ibuprofen and ketoprofen. The Trolox derivatives with ibuprofen (7) and ketoprofen (10) were the most potent inhibitors of lipid peroxidation (IC50 3.4 μΜ and 2.8 μΜ), several times more potent than the reference Trolox (IC50 25 μΜ). Most of the compounds decreased carrageenan-induced rat paw edema (37–67% at 150 μmol/kg). They were moderate inhibitors of soybean lipoxygenase, with the exception of ibuprofen derivative 8 (IC50 13 μΜ). The most active anti-inflammatory compounds exhibited a significant decrease in lipidemic indices in the plasma of Triton-induced hyperlipidemic rats, e.g., the most active compound 9 decreased triglycerides, total cholesterol and low-density lipoprotein cholesterol by 52%, 61% and 70%, respectively, at 150 μmol/kg (i.p.), similar to that of simvastatin, a well-known hypocholesterolemic drug. Since the designed compounds seem to exhibit multiple pharmacological actions, they may be of use for the development of agents against inflammatory and degenerative conditions.  相似文献   

3.
Erdong Gao (EDG), consisting equally of roots of Asparagi Radix and Ophiopogonis Radix, is a well-known traditional Chinese formulation that has been used to treat cough and throat pain for centuries. However, the bioactive components in EDG remain to be elucidated. In this study, a rapid and effective method involving live cell bio-specific extraction and HPLC-Q-TOF-MS/MS was established to rapidly screen and identify the anti-inflammatory compounds of an EDG extract. One hundred and twenty-four components were identified in EDG extract using HPLC-Q-TOF-MS/MS analysis. After co-incubation with 16HBE, HPAEpiCs and HUVECs, which have been validated as the key target cells for pulmonary diseases, sixteen components were demonstrated to exhibit an affinity for binding to them. Furthermore, fifteen components were subsequently verified to exert anti-inflammatory effects on lipopolysaccharide (LPS)-induced 16HBE, HPAEpiCs and HUVECs via inhibiting the release of TNF-α and IL-6, indicating that nine steroidal saponins may possess potential for the treatment of lung-related diseases. Taken together, our study provides evidence that live cell biospecific extraction combined with the HPLC-Q-TOF-MS/MS technique was an efficient method for rapid screening potential bioactive components in traditional Chinese medicines and the structure activity relationship of steroidal saponins in EDG was summarized for the first time.  相似文献   

4.
2′-hydroxy-chalcones are naturally occurring compounds with a wide array of bioactivity. In an effort to delineate the structural features that favor antioxidant and lipoxygenase (LOX) inhibitory activity, the design, synthesis, and bioactivity profile of a series of 2′-hydroxy-chalcones bearing diverse substituents on rings A and B, are presented. Among all the synthesized derivatives, chalcone 4b, bearing two hydroxyl substituents on ring B, was found to possess the best combined activity (82.4% DPPH radical scavenging ability, 82.3% inhibition of lipid peroxidation, and satisfactory LOX inhibition value (IC50 = 70 μM). Chalcone 3c, possessing a methoxymethylene substituent on ring A, and three methoxy groups on ring B, exhibited the most promising LOX inhibitory activity (IC50 = 45 μM). A combination of in silico techniques were utilized in an effort to explore the crucial binding characteristics of the most active compound 3c and its analogue 3b, to LOX. A common H-bond interaction pattern, orienting the hydroxyl and carbonyl groups of the aromatic ring A towards Asp768 and Asn128, respectively, was observed. Regarding the analogue 3c, the bulky (-OMOM) group does not seem to participate in a direct binding, but it induces an orientation capable to form H-bonds between the methoxy groups of the aromatic ring B with Trp130 and Gly247.  相似文献   

5.
In this study, polysaccharides from Laminaria japonica (LJP) were produced by the treatment of ultraviolet/hydrogen peroxide (UV/H2O2) degradation into different molecular weights. Then, the degraded LJP were used to prepare LJP/chitosan/PVA hydrogel wound dressings. As the molecular weight of LJP decreased from 315 kDa to 20 kDa, the swelling ratio of the LJP-based hydrogels rose from 14.38 ± 0.60 to 20.47 ± 0.42 folds of the original weight. However, the mechanical properties of LJP-based hydrogels slightly decreased. With the extension of the UV/H2O2 degradation time, the molecular weight of LJP gradually decreased, and the anti-inflammatory activities of LJP-based hydrogels gradually increased. LJP that were degraded for 60 min (60-gel) showed the best inhibition effects on proinflammatory cytokines, while the contents of TNF-α, IL-6, and IL-1β decreased by 57.33%, 44.80%, and 67.72%, respectively, compared with the Model group. The above results suggested that low Mw LJP-based hydrogels showed great potential for a wound dressing application.  相似文献   

6.
A series of novel multi-substituted coumarin derivatives were synthesized, spectroscopically characterized, and evaluated for their antioxidant activity, soybean lipoxygenase (LOX) inhibitory ability, their influence on cell viability in immortalized human keratinocytes (HaCaT), and cytotoxicity in adenocarcinomic human alveolar basal epithelial cells (A549) and human melanoma (A375) cells, in vitro. Coumarin analogues 4a–4f, bearing a hydroxyl group at position 5 of the coumarin scaffold and halogen substituents at the 3-phenyl ring, were the most promising ABTS•+ scavengers. 6,8-Dibromo-3-(4-hydroxyphenyl)-4-methyl-chromen-2-one (4k) and 6-bromo-3-(4,5-diacetyloxyphenyl)-4-methyl-chromen-2-one (3m) exhibited significant lipid peroxidation inhibitory activity (IC50 36.9 and 37.1 μM). In the DCF-DA assay, the 4′-fluoro-substituted compound 3f (100%), and the 6-bromo substituted compounds 3i (80.9%) and 4i (100%) presented the highest activity. The 3′-fluoro-substituted coumarins 3e and 4e, along with 3-(4-acetyloxyphenyl)-6,8-dibromo-4-methyl-chromen-2-one (3k), were the most potent lipoxygenase (LOX) inhibitors (IC50 11.4, 4.1, and 8.7 μM, respectively) while displaying remarkable hydroxyl radical scavenging ability, 85.2%, 100%, and 92.9%, respectively. In silico docking studies of compounds 4e and 3k, revealed that they present allosteric interactions with the enzyme. The majority of the analogues (100 μΜ) did not affect the cell viability of HaCaT cells, though several compounds presented over 60% cytotoxicity in A549 or A375 cells. Finally, the human oral absorption (%HOA) and plasma protein binding (%PPB) properties of the synthesized coumarins were also estimated using biomimetic chromatography, and all compounds presented high %HOA (>99%) and %PPB (60–97%) values.  相似文献   

7.
Citri Reticulatae Pericarpium (CRP) is one of the most commonly used food supplements and folk medicines worldwide, and possesses cardiovascular, digestive, and respiratory protective effects partially through its antioxidant and anti-inflammatory functions. The unique aromatic flavor and mild side effects make CRP a promising candidate for the development of anti-inflammatory functional food. However, recent studies show that the crude alcoholic extract and some isolated compounds of CRP show compromised anti-inflammatory activity, which became the main factor hindering its further development. To identify the bioactive compounds with anti-inflammatory potential, and improve the anti-inflammatory effects of the extract, a bioinformatics-guided extraction protocol was employed in this study. The potential bioactive candidates were identified by combing network pharmacology analysis, molecular docking, principal components analysis, k-means clustering, and in vitro testing of reference compounds. Our results demonstrated that 66 compounds in CRP could be grouped into four clusters according to their docking score profile against 24 receptors, while the cluster containing flavonoids and phenols might possess a more promising anti-inflammatory function. In addition, in vitro anti-inflammatory tests of the seven reference compounds demonstrated that hesperitin, naringenin, and gardenin B, which were grouped into a cluster containing flavonoids and phenols, significantly decreased LPS-induced NO, TNF-α, and IL-6 production of macrophages. While the compounds outside of that cluster, such as neohesperidin, naringin, hesperidin, and sinensetin showed little effect on alleviating LPS-induced NO and proinflammatory cytokine production. Based on the chemical properties of selected compounds, ethyl acetate (EtOAc) was selected as the solvent for extraction, because of its promising solubility of flavonoids and phenols. Furthermore, the ethanol alcoholic extract was used as a reference. The chemical profiling of EtOAc and crude alcoholic extract by HPLC/MS/MS also demonstrated the decreased abundance of flavonoid glycosides in EtOAc extract but increased abundance of phenols, phenolic acid, and aglycones. In accordance with the prediction, the EtOAc extract of CRP, but not the crude alcoholic extract, significantly decreased the NO, IL-6, and TNF-α production. Taken together, the results suggested selective extraction of phenols and flavonoids rich extract was able to increase the anti-inflammatory potential of CRP partially because of the synergistic effects between flavonoids, phenols, and enriched polymethoxyflavones. Our study might pave the road for the development of ethyl acetate extract of CRP as a novel functional food with anti-inflammatory function.  相似文献   

8.
A simple, rapid method using CE and microchip electrophoresis with C4D has been developed for the separation of four nonsteroidal anti-inflammatory drugs (NSAIDs) in the environmental sample. The investigated compounds were ibuprofen (IB), ketoprofen (KET), acetylsalicylic acid (ASA), and diclofenac sodium (DIC). In the present study, we applied for the first time microchip electrophoresis with C4D detection to the separation and detection of ASA, IB, DIC, and KET in the wastewater matrix. Under optimum conditions, the four NSAIDs compounds could be well separated in less than 1 min in a BGE composed of 20 mM His/15 mM Tris, pH 8.6, 2 mM hydroxypropyl-beta-cyclodextrin, and 10% methanol (v/v) at a separation voltage of 1000–1200 V. The proposed method showed excellent repeatability, good sensitivity (LODs ranging between 0.156 and 0.6 mg/L), low cost, high sample throughputs, portable instrumentation for mobile deployment, and extremely lower reagent and sample consumption. The developed method was applied to the analysis of pharmaceuticals in wastewater samples with satisfactory recoveries ranging from 62.5% to 118%.  相似文献   

9.
Warionia saharae Benth. & Coss. (Asteraceae) is an endemic species of North Africa naturally grown in the southwest of the Algerian Sahara. In the present study, this species’ hydromethanolic leaf extract was investigated for its phenolic profile characterized by ultra-high-performance liquid chromatography coupled with a diode array detector and an electrospray mass spectrometer (UHPLC-DAD-ESI/MS). Additionally, the chemical composition of W. saharae was analyzed by gas chromatography–mass spectrometry, and its antioxidant potential was assessed through five in vitro tests: DPPH scavenging activity, ABTS●+ scavenging assay, galvinoxyl scavenging activity, ferric reducing power (FRP), and cupric reducing antioxidant capacity. The UHPLC-DAD-ESI/MS analysis allowed the detection and quantification of 22 compounds, with taxifolin as the dominant compound. The GC–MS analysis allowed the identification of 37 compounds, and the antioxidant activity data indicate that W. saharae extract has a very high capacity to capture radicals due to its richness in compounds with antioxidant capacity. The extract also showed potent α-glucosidase inhibition as well as a good anti-inflammatory activity. However, weak anti-α-amylase and anticholinesterase activities were recorded. Moreover, an in silico docking study was performed to highlight possible interactions between three significant compounds identified in W. saharae extract and α-glucosidase enzyme.  相似文献   

10.
Chemical modification of sugars and nucleosides has a long history of producing compounds with improved selectivity and efficacy. In this study, several modified sugars (2–3) and ribonucleoside analogs (4–8) have been synthesized from α-d-glucose in a total of 21 steps. The compounds were tested for peripheral anti-nociceptive characteristics in the acetic acid-induced writhing assay in mice, where compounds 2, 7, and 8 showed a significant reduction in the number of writhes by 56%, 62%, and 63%, respectively. The compounds were also tested for their cytotoxic potential against human HeLa cell line via trypan blue dye exclusion test followed by cell counting kit-8 (CCK-8) assay. Compound 6 demonstrated significant cytotoxic activity with an IC50 value of 54 µg/mL. Molecular docking simulations revealed that compounds 2, 7, and 8 had a comparable binding affinity to cyclooxygenase-1 (COX-1) and cyclooxygenase-2 (COX-2) enzymes. Additionally, the bridged nucleoside analogs 7 and 8 potently inhibited adenosine kinase enzyme as well, which indicates an alternate mechanistic pathway behind their anti-nociceptive action. Cytotoxic compound 6 demonstrated strong docking with cancer drug targets human cytidine deaminase, proto-oncogene tyrosine-protein kinase Src, human thymidine kinase 1, human thymidylate synthase, and human adenosine deaminase 2. This is the first ever reporting of the synthesis and analgesic property of compound 8 and the cytotoxic potential of compound 6.  相似文献   

11.
In this study, a series of 3-(3-pyridyl)-oxazolidone-5-methyl ester derivatives was synthesized and characterized by 1H NMR, 13C NMR, and LC-MS. The conducted screening antibacterial studies of the new 3-(3-pyridyl)-oxazolidone-5-methyl ester derivatives established that the methyl sulfonic acid esters have broad activity spectrum towards Staphylococcus aureus, Streptococcus pneumoniae, Bacillus subtilis and Staphylococcus epidermidis. Among them, compound 12e has the most potent activity, with an MIC of 16 μg/mL against B.subtilis, and could reduce the instantaneous growth rate of bacteria. Furthermore, molecular docking studies were also simulated for compound 12e to predict the specific binding mode of this compound. In addition, anthelmintic activity of these compounds was also evaluated against adult Indian earthworms (Pheretima posthuman). The results showed that compound 11b had the best effect. These results above can provide experimental reference for the development of novel antibacterial and anthelmintic drugs.  相似文献   

12.
Flavonols possess several beneficial bioactivities in vitro and in vivo. In this study, two flavonols galangin and quercetin with or without heat treatment (100 °C for 15–30 min) were assessed for their anti-inflammatory activities in lipopolysaccharide (LPS)-stimulated rat intestinal epithelial (IEC-6) cells and whether the heat treatment caused activity changes. The flavonol dosages of 2.5–20 μmol/L had no cytotoxicity on the cells but could enhance cell viability (especially using 5 μmol/L flavonol dosage). The flavonols could decrease the production of prostaglandin E2 and three pro-inflammatory cytokines interleukin-1β (IL-1β), IL-6, and tumor necrosis factor-α, and simultaneously promote the production of two anti-inflammatory cytokines IL-10 and transforming growth factor-β. The Western-blot results verified that the flavonols could suppress the LPS-induced expression of TLR4 and phosphorylated IκBα and p65, while the molecular docking results also illustrated that the flavonols could bind with TLR4 and NF-κB to yield energy decreases of −(21.9–28.6) kJ/mol. Furthermore, an inhibitor BAY 11-7082 blocked the NF-κB signaling pathway by inhibiting the expression of phosphorylated IκBα/p65 and thus mediated the production of IL-6/IL-10 as the flavonols did, which confirmed the assessed anti-inflammatory effect of the flavonols. Consistently, galangin had higher anti-inflammatory activity than quercetin, while the heated flavonols (especially those with longer heat time) were less active than the unheated counterparts to exert these target anti-inflammatory effects. It is highlighted that the flavonols could antagonize the LPS-caused IEC-6 cells inflammation via suppressing TLR4/NF-κB activation, but heat treatment of the flavonols led to reduced anti-inflammatory efficacy.  相似文献   

13.
何蔚  邹嘉佳  逯东伟  程辉  林翠梧 《应用化学》2017,34(10):1150-1160
L-组氨酸对生物有机体有着良好的亲和能力,通过修饰其化学结构以期寻找药理活性和生物利用度高的衍生物。本文将L-组氨酸分别与反式肉桂酸和对甲氧基肉桂酸反应,合成了两种组氨酸酰胺类衍生物,利用傅里叶变换红外光谱、质谱、氢谱/碳谱核磁共振谱进行了结构表征。采用分子操作环境(MOE)软件分子对接技术、荧光光谱法、同步荧光光谱法(SFS)、紫外-可见光谱法(UV-Vis),共同研究了两种衍生物分别和人血清白蛋白(HSA)相结合的机理。MOE对接结果显示,这两种衍生物与HSA的模拟结合能分别为-13.82和-16.25 kcal/mol,主要是通过范德华力和疏水作用结合在HSA亚结构域ⅡA(即siteⅠ)的疏水腔内。荧光猝灭数据表明,衍生物与HSA相互作用并形成了新的基态配合物,荧光猝灭过程为静态猝灭;不同温度(300、305和310 K)下衍生物与HSA相互作用的结合常数分别为1.773×104、6.354×10~3、1.260×10~3和5.314×10~4、4.614×10~3、1.420×10~3;由热力学参数得到衍生物与HSA的结合过程是由范德华力驱动;SFS表明,衍生物使得HSA的二级结构发生了变化。结合UV-Vis的结果可以确定,在体外生理条件下,组氨酸酰胺类衍生物均可以通过范德华力与HSA结合,并对HSA内源荧光产生静态猝灭及构象影响,这与分子对接结果一致,从而为组氨酸酰胺类衍生物药物的进一步开发提供了参考。  相似文献   

14.
The superoxide radical ion is involved in numerous physiological processes, associated with both health and pathology. Its participation in cancer onset and progression is well documented. Lanthanum(III) and gallium(III) are cations that are known to possess anticancer properties. Their coordination complexes are being investigated by the scientific community in the search for novel oncological disease remedies. Their complexes with 5-aminoorotic acid suppress superoxide, derived enzymatically from xanthine/xanthine oxidase (X/XO). It seems that they, to differing extents, impact the enzyme, or the substrate, or both. The present study closely examines their chemical structure by way of modern methods—IR, Raman, and 1H NMR spectroscopy. Their superoxide-scavenging behavior in the presence of a non-enzymatic source (potassium superoxide) is compared to that in the presence of an enzymatic source (X/XO). Enzymatic activity of XO, defined in terms of the production of uric acid, seems to be impacted by both complexes and the pure ligand in a concentration-dependent manner. In order to better relate the compounds’ chemical characteristics to XO inhibition, they were docked in silico to XO. A molecular docking assay provided further proof that 5-aminoorotic acid and its complexes with lanthanum(III) and gallium(III) very probably suppress superoxide production via XO inhibition.  相似文献   

15.
The prostaglandin-endoperoxide H synthase-1 (PGHS-1) and prostaglandin-endoperoxide H synthase-2 (PGHS-2) are the targets of nonsteroidal anti-inflammatory drugs (NSAIDs).It appears that the high degree of selectivity for inhibition of PGHS-2 shown by certain compounds is the result of two mechanisms (time-dependent, time-independent inhibition), by which they interact with each isoform. Molecular models of the complexes formed by indomethacin, sulindac, fenamates, 2-phenylpropionic acids and selective cyclooxygenase-2 (COX-2) inhibitors with the cyclooxygenase active site of human PGHS-2 have been built, paying particular attention to water molecules that participate in the hydrogen-bonding network at the polar active site entrance. The stability of the complexes has been assessed by molecular dynamics simulations and interaction energy decomposition analysis, and their biological significance has been discussed in light of available X-ray crystallographic and kinetic results. The selective PGHS-2 inhibitors exploit the extra space of a side-pocket in the active site of PGHS-2 that is not found in PGHS-1. The results suggest that active site hydration together with residues Tyr355, Glu524, Arg120 and Arg513 are crucial to understand the time-dependent inhibition mechanism. A marked relationship between the isoform selectivity and tightly interactions with residues into the side pocket bordered by Val523 is also found.  相似文献   

16.
Silver nanoparticles (AgNPs) have recently gained interest in the medical field because of their biological features. The present study aimed at screening Rhizophora apiculata secondary metabolites, quantifying their flavonoids and total phenolics content, green synthesis and characterization of R. apiculata silver nanoparticles. In addition, an assessment of in vitro cytotoxic, antioxidant, anti-inflammatory and wound healing activity of R. apiculata and its synthesized AgNPs was carried out. The powdered plant material (leaves) was subjected to Soxhlet extraction to obtain R. apiculata aqueous extract. The R. apiculata extract was used as a reducing agent in synthesizing AgNPs from silver nitrate. The synthesized AgNPs were characterized by UV-Vis, SEM-EDX, XRD, FTIR, particle size analyzer and zeta potential. Further aqueous leaf extract of R. apiculata and AgNPs was subjected for in vitro antioxidant, anti-inflammatory, wound healing and cytotoxic activity against A375 (Skin cancer), A549 (Lung cancer), and KB-3-1 (Oral cancer) cell lines. All experiments were repeated three times (n = 3), and the results were given as the mean ± SEM. The flavonoids and total phenolics content in R. apiculata extract were 44.18 ± 0.086 mg/g of quercetin and 53.24 ± 0.028 mg/g of gallic acid, respectively. SEM analysis revealed R. apiculata AgNPs with diameters ranging from 35 to 100 nm. XRD confirmed that the synthesized silver nanoparticles were crystalline in nature. The cytotoxicity cell viability assay revealed that the AgNPs were less toxic (IC50 105.5 µg/mL) compared to the R. apiculata extract (IC50 47.47 µg/mL) against the non-cancerous fibroblast L929 cell line. Antioxidant, anti-inflammatory, and cytotoxicity tests revealed that AgNPs had significantly more activity than the plant extract. The AgNPs inhibited protein denaturation by a mean percentage of 71.65%, which was equivalent to the standard anti-inflammatory medication diclofenac (94.24%). The AgNPs showed considerable cytotoxic effect, and the percentage of cell viability against skin cancer, lung cancer, and oral cancer cell lines was 31.84%, 56.09% and 22.59%, respectively. R. apiculata AgNPs demonstrated stronger cell migration and percentage of wound closure (82.79%) compared to the plant extract (75.23%). The overall results revealed that R. apiculata AgNPs exhibited potential antioxidant, anti-inflammatory, wound healing, and cytotoxic properties. In future, R. apiculata should be further explored to unmask its therapeutic potential and the mechanistic pathways of AgNPs should be studied in detail in in vivo animal models.  相似文献   

17.
Twelve compounds, including two new aristolochic acid analogues with a formyloxy moiety (9–10) and 10 known aristolochic acid derivates (1–8 and 11–12), were obtained from the roots of Aristolochia contorta. Their structures were elucidated using extensive spectroscopic methods. Their cytotoxic activity in human proximal tubular cells HK-2 was evaluated by the MTT method, which has been widely used to assess cell viability. Among these molecules, compounds 3 and 9 were found to be more cytotoxic. Furthermore, molecular modeling was used to evaluate, for the first time, the interactions of compounds 3 and 9 with the target protein organic anionic transporter 1 (OAT1) that plays a key role in mediating aristolochic acid nephropathy. Structure–activity relationships are briefly discussed.  相似文献   

18.
A specific, accurate, precise and reproducible high performance liquid chromatography (HPLC) method was developed and validated for the simultaneous quantitation of etoricoxib, salicylic acid, valdecoxib, ketoprofen, nimesulide and celecoxib in human plasma. The method employed a simple liquid-liquid extraction of etoricoxib, salicylic acid, valdecoxib, ketoprofen, nimesulide and celecoxib and internal standard (IS, DRF-4367) from human plasma (500 microL) into acetonitirile. The organic layer was separated and evaporated under a gentle stream of nitrogen at 40 degrees C. The residue was reconstituted in the mobile phase and injected onto a Kromasil KR 100-5C18 column (4.6 x 250 mm, 5 microm). The chromatographic separation was achieved by gradient elution consisting of 0.05 M formic acid (pH 3)-acetonitrile-methanol-water at a flow rate of 1.0 mL/min. The eluate was monitored using an ultraviolet (UV) detector set at 235 nm. The ratio of peak area of each analyte to IS was used for quantification of plasma samples. Nominal retention times of etoricoxib, salicylic acid, valdecoxib, ketoprofen, nimesulide, IS and celecoxib were 15.63, 17.20, 21.66, 24.95, 26.27, 30.24 and 32.22 min, respectively. The standard curve for etoricoxib, salicylic acid, valdecoxib, ketoprofen and celecoxib was linear (r2 > 0.999) in the concentration range 0.1-50 microg/mL and for nimesulide (r2 > 0.999) in the concentration range 0.5-50 microg/mL. Absolute recovery was >83% from human plasma for all the analytes and IS. The lower limit of quantification (LLOQ) of nimesulide was 0.5 microg/mL and for etoricoxib, salicylic acid, valdecoxib, ketoprofen and celecoxib the LLOQ was 0.1 microg/mL. The inter- and intra-day precisions in the measurement of QC samples, 0.1, 0.3, 15.0 and 40.0 microg/mL (for all analytes except nimesulide), were in the range 2.29-9.37% relative standard deviation (RSD) and 0.69-10.28% RSD, respectively. For nimesulide the inter- and intra-day precisions in the measurement of quality control (QC) samples, 0.5, 1.5, 15.0 and 40.0 microg/mL, were in the range 3.21-7.37% RSD and 0.97-7.06% RSD, respectively. Accuracy in the measurement of QC samples for all analytes was in the range 91.03-106.38% of the nominal values. All analytes including IS were stable in the battery of stability studies, viz. bench top, autosampler and freeze-thaw cycles. Stability of all analytes was established for 21 days at -20 degrees C. The application of the assay in an oral pharmacokinetic study in rats co-administered with celecoxib and valdecoxib is described.  相似文献   

19.
A rapid and reliable LC-MS/MS method for the simultaneous confirmation of twelve non steroidal anti-inflammatory drugs (NSAIDs) in bovine milk was developed and fully validated in accordance with the European Commission Decision 2002/657/EC. The validation scheme was built in accordance with the MRLs or target analytical levels (EU-CRL recommended concentrations and detection capabilities) of the analytes, except for diclofenac for which the lower level of validation achieved was 0.5 μg kg(-1) whereas its MRL is 0.1 μg kg(-1). The NSAIDs investigated were as follows: phenylbutazone (PBZ), oxyphenylbutazone (OPB), naproxen (NP), mefenamic acid (MF), vedaprofen (VDP), flunixin (FLU), 5-hydroxyflunixin (FLU-OH), tolfenamic acid (TLF), meloxicam (MLX), diclofenac (DC), carprofen (CPF) and ketoprofen (KTP). Several extraction procedures had been investigated during the development phase. Finally, the best results were obtained with a procedure using only methanol as the extraction solvent, with an evaporation step included and no further purification. Chromatographic separation was achieved on a C18 analytical column and the run was split in 2 segments. Matrix effects were also investigated. Data acquisition implemented for the confirmatory purpose was performed by monitoring 2 MRM transitions per analyte under the negative electrospray mode. Mean relative recoveries ranged from 94.7% to 110.0%, with their coefficients of variation lying between 2.9% and 14.7%. Analytical limits expressed in terms of decision limits (CCα) were evaluated between 0.69 μg kg(-1) (FLU) and 27.54 μg kg(-1) (VDP) for non-MRL compounds, and at 0.10 (DC), 15.37 (MLX), 45.08 (FLU-OH), and 62.96 μg kg(-1) (TLF) for MRL compounds. The validation results proved that the method is suitable for the screening and confirmatory steps as implemented for the French monitoring plan for NSAID residue control in bovine milk.  相似文献   

20.
Resistance to chemotherapy is a current clinical problem, especially in the treatment of microbial infections and cancer. One strategy to overcome this is to make new derivatives of existing drugs by conjugation to organometallic fragments, either by an appropriate linker, or by direct coordination of the drug to a metal. We illustrate this with examples of conjugated organometallic metallocene sandwich and half-sandwich complexes, RuII and OsII arene, and RhIII and IrIII cyclopentadienyl half-sandwich complexes. Ferrocene conjugates are particularly promising. The ferrocene–chloroquine conjugate ferroquine is in clinical trials for malaria treatment, and a ferrocene-tamoxifen derivative (a ferrocifen) seems likely to enter anticancer trails soon. Several other examples illustrate that organometallic conjugation can restore the activity of drugs to which resistance has developed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号