首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 21 毫秒
1.
Considering the current trend in the global coffee market, which involves an increased demand for decaffeinated coffee, the aim of the present study was to formulate coffee blends with reduced caffeine content, but with pronounced antioxidant and attractive sensory properties. For this purpose, green and roasted Arabica and Robusta coffee beans of different origins were subjected to the screening analysis of their chemical and bioactive composition using standard AOAC, spectrophotometric and chromatographic methods. From roasted coffee beans, espresso, Turkish and filter coffees were prepared, and their sensory evaluation was performed using a 10-point hedonic scale. The results showed that Arabica coffee beans were richer in sucrose and oil, while Robusta beans were characterized by higher content of all determined bioactive parameters. Among all studied samples, the highest content of 3-O-caffeoylquinic acid (14.09 mg g−1 dmb), 4-O-caffeoylquinic acid (8.23 mg g−1 dmb) and 5-O-caffeoylquinic acid (4.65 mg g−1 dmb), as well as caffeine (22.38 mg g−1 dmb), was detected in roasted Robusta beans from the Minas Gerais region of Brazil, which were therefore used to formulate coffee blends with reduced caffeine content. Robusta brews were found to be more astringent and recognized as more sensorily attractive, while Arabica decaffeinated brews were evaluated as more bitter. The obtained results point out that coffee brews may represent a significant source of phenolic compounds, mainly caffeoylquinic acids, with potent antioxidant properties, even if they have reduced caffeine content.  相似文献   

2.
3.
Ribeiro JS  Ferreira MM  Salva TJ 《Talanta》2011,83(5):171-1358
Mathematical models based on chemometric analyses of the coffee beverage sensory data and NIR spectra of 51 Arabica roasted coffee samples were generated aiming to predict the scores of acidity, bitterness, flavour, cleanliness, body and overall quality of coffee beverage. Partial least squares (PLS) were used to construct the models. The ordered predictor selection (OPS) algorithm was applied to select the wavelengths for the regression model of each sensory attribute in order to take only significant regions into account. The regions of the spectrum defined as important for sensory quality were closely related to the NIR spectra of pure caffeine, trigonelline, 5-caffeoylquinic acid, cellulose, coffee lipids, sucrose and casein. The NIR analyses sustained that the relationship between the sensory characteristics of the beverage and the chemical composition of the roasted grain were as listed below: 1 - the lipids and proteins were closely related to the attribute body; 2 - the caffeine and chlorogenic acids were related to bitterness; 3 - the chlorogenic acids were related to acidity and flavour; 4 - the cleanliness and overall quality were related to caffeine, trigonelline, chlorogenic acid, polysaccharides, sucrose and protein.  相似文献   

4.
Coffee cherry is a rich source of chlorogenic acids (CGAs) and caffeine. In this study we examined the potential antioxidant activity and enzyme inhibitory effects of whole coffee cherries (WCC) and their two extracts on α-amylase, α-glucosidase and acetylcholinesterase (AChE) activities, which are targets for the control of diabetes and Alzheimer’s diseases. Whole coffee cherry extract 40% (WCCE1) is rich in chlorogenic acid compounds, consisting of a minimum of 40% major isomers, namely 3-caffeoylquinic acids, 4-caffeoylquinic acids, 5-caffeoylquinic acids, 3,4-dicaffeoylquinic acid, 3,5-dicaffeoylquinic acid, 4,5-dicaffeoylquinic acid, 4-feruloylquinc acid, and 5-feruloylquinc acid. Whole coffee cherry extract 70% (WCCE2) is rich in caffeine, with a minimum of 70%. WCCE1 inhibited the activities of digestive enzymes α-amylase and α-glucosidase, and WCCE2 inhibited acetylcholinesterase activities with their IC50 values of 1.74, 2.42, and 0.09 mg/mL, respectively. Multiple antioxidant assays—including DPPH, ABTS, FRAP, ORAC, HORAC, NORAC, and SORAC—demonstrated that WCCE1 has strong antioxidant activity.  相似文献   

5.
Wet coffee processing generates a large amount of coffee pulp waste that is mostly disposed of in the processing units. To reduce this waste and the associated environmental burden, an alternative strategy would be to exploit the coffee pulp to produce a durable and stable consumable product. Accordingly, a puree produced from Robusta coffee pulp was investigated in relation to its physicochemical and sensory properties. After thermal and chemical stabilization, the obtained puree (pH 3.6) was found to exhibit a multimodal particle size distribution, shear-thinning behavior, and lower discoloration, as well as an antioxidant capacity of 87.9 µmolTE/gDM. The flavor of the puree was examined by sensory evaluation and the corresponding analyses of aroma-active volatile compounds, as determined using aroma extract dilution analyses (AEDA) and gas chromatography-mass spectrometry/olfactometry (GC-MS/O). The puree was characterized by dominant fruity (4.4), floral (3.4), citrusy (3.3) and hay-like (3.3) odor impressions. The aroma-active compounds were predominantly aldehydes, acids, and lactones, whereby (E)-β-damascenone, geraniol, 4-methylphenol, 3-hydroxy-4,5-dimethylfuran-2(5H)-one, and 4-hydroxy-3-methoxybenzaldehyde exhibited the highest flavor dilution (FD) factor (1024), thereby indicating their high impact on the overall aroma of the puree. This study demonstrates an approach to stabilize coffee pulp to produce a sweet, fruity puree with comparable physical properties to other fruit purees and that can be used as a new and versatile flavoring ingredient for various food applications.  相似文献   

6.
The aim of this study was to determine which anthocyanins are related to the purple coloration of young leaves in Coffea arabica var. Purpurascens and assess their impact on photosynthesis as compared to C. arabica var. Catuaí, with green leaves. Two delphinidin glicosides were identified and histological cross-sections showed they were located throughout the adaxial epidermis in young leaves, disappearing as the leaves mature. Regardless the irradiance level, the photosynthetic performance of Purpurascens leaves did not differ from that observed in leaves of the Catuaí variety, providing no evidence that anthocyanins improve photosynthetic performance in coffee plants. To analyze the photoprotective action of anthocyanins, we evaluated the isomerization process for chlorogenic acids (CGAs) in coffee leaves exposed to UV-B radiation. No differences were observed in the total concentration of phenolic compounds in either variety before or after the UV treatment; however, we observed less degradation of CGA isomers in the Purpurascens leaves and a relative increase of cis-5-caffeoylquinic acid, a positional isomer of one of the most abundant form of CQA in coffee leaves, trans-5-caffeoylquinic acid, suggesting a possible protective role for anthocyanins in this purple coffee variety.  相似文献   

7.
Volatile compounds in fifty-eight Arabica roasted coffee samples from Brazil were analyzed by SPME-GC-FID and SPME-GC-MS, and the results were compared with those from sensory evaluation. The main purpose was to investigate the relationships between the volatile compounds from roasted coffees and certain sensory attributes, including body, flavor, cleanliness and overall quality. Calibration models for each sensory attribute based on chromatographic profiles were developed by using partial least squares (PLS) regression. Discrimination of samples with different overall qualities was done by using partial least squares-discriminant analysis (PLS-DA). The alignment of chromatograms was performed by the correlation optimized warping (COW) algorithm. Selection of peaks for each regression model was performed by applying the ordered predictors selection (OPS) algorithm in order to take into account only significant compounds. The results provided by the calibration models are promising and demonstrate the feasibility of using this methodology in on-line or routine applications to predict the sensory quality of unknown Brazilian Arabica coffee samples.According to the PLS-DA on chromatographic profiles of different quality samples, compounds 3-methypropanal, 2-methylfuran, furfural, furfuryl formate, 5-methyl-2-furancarboxyaldehyde, 4-ethylguaiacol, 3-methylthiophene, 2-furanmethanol acetate, 2-ethyl-3,6-dimethylpyrazine, 1-(2-furanyl)-2-butanone and three others not identified compounds can be considered as possible markers for the coffee beverage overall quality.  相似文献   

8.
A novel synthesis of 5-O-feruloylquinic acid, a polyphenolic compound found in coffee beans, and its methyl ester derivative has been optimized. The sequence involves 6 steps and is compatible with the preparation of potential human metabolites of these compounds. The key reaction is a Knoevenagel condensation of 4-hydroxy-3-methoxy-benzaldehyde and a malonate ester of quinic acid.  相似文献   

9.
刺五加注射液是临床治疗脑血管疾病及中枢神经系统疾病的常用药物,能明显改善急性脑梗死患者血脂水平及内皮细胞功能,促进缺血脑组织神经干细胞的增殖,对高血压、脑梗死等脑血管疾病具有良好的疗效。目前刺五加注射液的药效物质基础研究还比较薄弱,制约了其临床作用机理的深入研究。该研究基于超高效液相色谱-四极杆-静电场轨道阱高分辨质谱联用(UHPLC-Q/Orbitrap HRMS)技术对刺五加注射液的化学成分进行定性分析,采用BEH Shield RP18色谱柱(100 mm×2.1 mm,1.7μm),以0.1%甲酸水溶液和乙腈为流动相进行梯度洗脱,流速为0.4 mL/min,柱温30℃,在加热电喷雾离子源正、负离子两种模式下采集刺五加注射液的一级、二级质谱数据。通过调研文献收集刺五加已报道成分的名称、分子式和结构式,建立刺五加化学成分列表用于数据后处理,根据高分辨质谱提供的精确质量数和碎片离子信息,结合对照品比对、数据库匹配及裂解规律分析,从刺五加注射液中鉴定出102个化合物,包括62个苯丙素类、23个有机酸类、7个核苷类、1个环烯醚萜类和9个其他类成分,其中有65个成分为从刺五加注射液中首次鉴定得到。该研究建立了刺五加注射液的UHPLC-Q/Orbitrap HRMS分析方法,可以全面、快速地分析刺五加注射液的化学成分,新发现的27个苯丙素类成分为刺五加注射液临床治疗神经系统疾病提供了一定的化学成分依据,也为其药效作用机理的深入阐明提供了新的研究目标。  相似文献   

10.
The use of vacuum cycles for the cold extraction of coffee is a new process that leads to a significant reduction in process time of Cold Brew compared to conventional methods. This research aimed at specifying the necessary parameters for producing a consumer-accepted cold brew coffee by applying vacuum cycles. This was achieved by investigating the effect of the number of cycles and of the applied pressure (vacuum) on the physicochemical characteristics of the cold brew coffee, i.e., total dissolved solids (TDS%), pH, acidity, phenol and caffeine content and color. Furthermore, sensory evaluation took place by members of the Specialty Coffee Association of America (SCAA) to specify parameters such as coffee blend, coffee/water ratio, total water hardness and grind size and secondly to determine the optimal pressure and number of cycles for a tasty final beverage. The sensory and physiochemical characteristics of cold extraction coffee were investigated by Principal Component Analysis (PCA). It became evident that coffee extraction by applying two vacuum cycles at 205 mbar pressure produced the lowest intensity of physiochemical properties (caffeine, phenols, acidity, TDS% and pH), and the highest score of sensory characteristics (fragrance, body, acidity, flavor, balance, and aftertaste). Caffeine and phenol concentration of the optimal beverage were 26.66 ± 1.56 mg/g coffee and 23.36 ± 0.79 mg gallic acid/g coffee respectively. The physiochemical characteristics were also compared to a beverage of hot extraction of the same blend and ratio of coffee to water.  相似文献   

11.
Espresso coffee (EC) is a common coffee preparation technique that nowadays is broadly widespread all over the globe. Its popularity is in part attributed to the intense aroma and pleasant flavor. Many researchers have studied and reviewed the aroma of the coffee, but there is a lack of specific review focused on EC aroma profile even if it is intensively investigated. Thus, the objective of the current review was to summarize the aroma profile of EC and how different preparation variables can affect EC flavor. Moreover, a collection of diverse analytical procedures for volatile analysis was also reported. The findings of this survey showed that the volatile fraction of EC is extremely complex, but just some compounds are responsible for the characteristic aroma of the coffee, such as some aldehyde, ketones, furanones, furans, sulfur compounds, pyrazines, etc. In addition, during preparation, some variables, e.g., temperature and pressure of water, granulometry of the coffee particle, and brew ratio, can also modify the aroma profile of this beverage, and therefore its quality. A better understanding of the aroma fraction of EC and how the preparation variables should be adjusted according to desired EC would assist coffee workers in obtaining a higher quality product.  相似文献   

12.
In this study, phenolic compounds of hazelnut leaves of 10 different cultivars with the same cultural, geographical, geological and climatic conditions were analyzed by HPLC/DAD and HPLC/DAD/MS/MS - ESI. Eight phenolic compounds (3-caffeoylquinic acid, 5-caffeoylquinic acid, caffeoyltartaric acid, p-coumaroyltartaric acid, myricetin 3-rhamnoside, quercetin 3-glycoside, quercetin 3-rhamnoside and kaempferol 3-rhamnoside) were identified and quantified. All of the analyzed samples showed a similar phenolic profile, in which myricetin 3-rhamnoside and quercetin 3-rhamnoside were the major compounds and caffeoyltartaric and p-coumaroyltartaric acids were present in vestigial amounts.  相似文献   

13.
Coffee is a widely consumed beverage, both in Europe, where its consumption is highest, and on other continents. It provides many compounds, including phenolic compounds. The aim of the study was to assess the effect of various brewing methods on the total phenolic content (TPC) in the infusion. Research material comprised commercially available coffees: Instant Arabica and Robusta, freshly ground Arabica and Robusta (immediately prior to the analysis), ground Arabica and Robusta, decaffeinated Arabica, and green Arabica and Robusta. The following preparation methods were used: Pouring hot water over coffee grounds or instant coffee, preparing coffee in a percolator and using a coffee machine. Additional variables which were employed were water temperature (90 or 100 °C) and its type (filtered or unfiltered). In order to determine the impact of examined factors, 225 infusion were prepared. Total phenolic content was determined by the spectrophotometric method using the Folin-Ciocalteu reagent and the obtained results were expressed in mg gallic acid (GAE) per 100 g of brewed coffee. The highest value was obtained for 100% Arabica ground coffee prepared in a coffee percolator using unfiltered water at a temperature of 100 °C: 657.3 ± 23 mg GAE/100 g of infusion. High values were also observed for infusions prepared in a coffee machine, where the highest TPC value was 363.8 ± 28 mg GAE/100 g for ground Arabica. In turn, the lowest TPC was obtained for Arabica green coffee in opaque packaging, brewed with filtered water at a temperature of 100 °C: 19.5 ± 1 mg GAE/100 g of infusion. No significant effect of temperature and water type on the TPC within one type of coffee was observed. Due to its high content of phenolic compounds, Arabica coffee brewed in a coffee percolator should be the most popular choice for coffee drinkers.  相似文献   

14.
Whole wheat flour has a shorter shelf life than refined wheat flour due to off-flavor development. An untargeted liquid chromatography/mass spectrometry (LC/MS) flavoromics approach was applied to identify compounds that negatively impact the flavor liking in whole wheat bread made from aged flours. The chemical profiles of thirteen breads made from aged flours were obtained using LC/MS and modeled by orthogonal partial least squares (OPLS) to predict flavor liking. Top predictive chemical features (negatively correlated) were identified as pinellic acid (9S,12S,13S-trihydroxy-10E-octadecenoic acid), 12,13-dihydroxy-9Z-octadecenoic acid, and 1-(9Z,12Z-octadecadienoyl)-sn-glycero-3-phosphocholine. The sensory analysis confirmed the three compounds increased the bitterness intensity of the bread samples. The formation of the trihydroxy fatty acid bitter compound, pinellic acid (9S,12S,13S-trihydroxy-10E-octadecenoic acid), was impacted by the lipoxygenase activity of the flour; however, there was no influence on the formation of 12,13-dihydroxy-9Z-octadecenoic acid or 1-(9Z,12Z-octadecadienoyl)-sn-glycero-3-phosphocholine. Additionally, the concentrations of all bitter compounds were significantly higher in bread made from aged flour versus non-aged flour.  相似文献   

15.
A roast coffee infusion (nicaragua arabica) was acidified (pH 1,5) with hydrochloric acid and extracted with diethyl ether in a perforator. After evaporation of the solvent the residue was treated with N-methyl-N-trimethylsilyl trifluoroacetamide and analyzed by glass capillary GC/MS. The main components were identified by their electron impact and isobutane chemical ionization mass spectra. 1,2,4-trihydroxy benzene, 1-ethyl-3, 4-dihydroxy benzene and 2,3-dihydroxy toluene were identified as new constituents of roast coffee with possible emetic properties.  相似文献   

16.
The brewing properties of coffee products are defined by the chemical composition in the bean, including sugars and polyols. Some factors, such as coffee species and roasting, may affect the level of these compounds in the bean. A new analytical microwave-assisted extraction (MAE) method has been developed to extract sugars and polyols from the coffee bean. The studied extraction conditions for the MAE were temperature (30–80 °C), solvent composition (0–50% ethanol in water), and solvent-to-sample ratio (10:1–30:1 mL solvent per g sample). A Box-Behnken design was applied to study the effect of extraction variables, and subsequently, the influential variables were optimized by response surface methodology (RSM). In addition to the main effect of the solvent-to-sample ratio, all quadratic effects significantly influenced (p < 0.05) the recovery of sugars and polyols from the coffee beans. RSM suggested the optimized MAE conditions: temperature 52 °C, ethanol concentration in water 18.5%, and solvent-to-sample ratio 17:1. Under the optimum condition, a kinetics study confirmed that 15 min showed high precision and accuracy of the developed method. Ultimately, a real sample application of the developed MAE revealed that the new method successfully described the composition of sugars and polyols in regular and peaberry coffee beans. Additionally, the method also effectively characterized the green and roasted Arabica and Robusta coffee beans.  相似文献   

17.
Chlorogenic acids are among the most abundant phenolics found in the human diet. Of these, the mono-caffeoylquinic acids are the predominant phenolics found in fruits, such as apples and pears, and products derived from them. In this research, a comprehensive study of the electrospray ionization (ESI) tandem mass spectrometric (MS/MS) dissociation behavior of the three most common mono-caffeoylquinic acids, namely 5-O-caffeoylquinic acid (5-CQA), 3-O-caffeoylquinic acid (3-CQA) and 4-O-caffeoylquinic acid (4-CQA), were determined using both positive and negative ionization. All proposed structures of the observed product ions were confirmed with second-generation MS3 experiments. Similarities and differences between the dissociation pathways in the positive and negative ion modes are discussed, confirming the proposed structures and the established MS/MS fingerprints. MS/MS dissociation was primarily driven via the cleavage of the ester bond linking the quinic acid moiety to the caffeic acid moiety within tested molecules. Despite being structural isomers with the same m/z values and dissociation behaviors, the MS/MS data in the negative ion mode was able to differentiate the three isomers based on ion intensity for the major product ions, observed at m/z 191, 179 and 173. This differentiation was consistent among various MS instruments. In addition, ESI coupled with high-field asymmetric waveform ion mobility spectrometry-mass spectrometry (ESI-FAIMS-MS) was employed for the separation of these compounds for the first time. By combining MS/MS data and differential ion mobility, a method for the separation and identification of mono-caffeoylquinic in apple/pear juice samples was developed with a run time of less than 1 min. It is envisaged that this methodology could be used to identify pure juices based on their chlorogenic acid profile (i.e., metabolomics), and could also be used to detect juice-to-juice adulteration (e.g., apple juice addition to pear juice).  相似文献   

18.
To explore the role of fatty acids as flavor precursors in the flavor of oxidized tallow, the volatile flavor compounds and free fatty acid (FFAs) in the four oxidization stages of tallow were analyzed via gas chromatography (GC)–mass spectrometry (MS), the aroma characteristics of them were analyzed by GC–olfactory (GC-O) method combined with sensory analysis and partial least-squares regression (PLSR) analysis. 12 common FFAs and 35 key aroma-active compounds were obtained. Combined with the results of odor activity value (OAV) and FD factor, benzaldehyde was found to be an important component in unoxidized tallow. (E,E)-2,4-Heptadienal, (E,E)-2,4-decadienal, (E)-2-nonenal, octanal, hexanoic acid, hexanal and (E)-2-heptenal were the key compounds involved in the tallow flavor oxidation. The changes in FFAs and volatile flavor compounds during oxidation and the metabolic evolution of key aroma-active compounds are systematically summarized in this study. The paper also provides considerable guidance in oxidation control and meat flavor product development.  相似文献   

19.
建立了烘焙咖啡中丙烯酰胺的超高效液相色谱-大气压化学电离-串联质谱(UHPLC-APCI-MS/MS)分析方法。样品经甲醇提取,HLB固相萃取(SPE)小柱净化,Brownlee validated AQ C18色谱柱分离,采用大气压化学电离(APCI)源,正离子扫描和多反应监测(MRM)模式对丙烯酰胺进行检测,内标法定量。结果表明,丙烯酰胺在0.5~100.0 μg/L范围内具有良好的线性关系,相关系数(r2)为0.999,方法检出限为5.0 μg/kg,定量限为10.0 μg/kg。在100.0、200.0和1000.0 μg/kg添加水平下,丙烯酰胺的回收率为94.6%~115.0%,相对标准偏差(RSD)值为2.8%~3.6%(n=6)。本方法采用APCI源作为离子化方式,能有效地减少咖啡基质对丙烯酰胺的基质干扰,前处理简单,灵敏度高,适用于咖啡中丙烯酰胺的日常检测。  相似文献   

20.
Resonance‐enhanced multiphoton ionisation time‐of‐flight mass spectrometry (REMPI‐TOFMS) enables the fast and sensitive on‐line monitoring of volatile organic compounds (VOC) formed during coffee roasting. On the one hand, REMPI‐TOFMS was applied to monitor roasting gases of an industrial roaster (1500 kg/h capacity), with the aim of determining the roast degree in real‐time from the transient chemical signature of VOCs. On the other hand, a previously developed μ‐probe sampling device was used to analyse roasting gases from individual coffee beans. The aim was to explore fundamental processes at the individual bean level and link these to phenomena at the batch level. The pioneering single‐bean experiments were conducted in two configurations: (1) VOCs formed inside a bean were sampled in situ, i.e. via a drilled μ‐hole, from the interior, using a μ‐probe (inside). (2) VOCs were sampled on‐line in close vicinity of a single coffee bean's surface (outside). The focus was on VOCs originating from hydrolysis and pyrolytic degradation of chlorogenic acids, like feruloyl quinic acid and caffeoyl quinic acid. The single bean experiments revealed interesting phenomena. First, differences in time–intensity profiles between inside versus outside (time shift of maximum) were observed and tentatively linked to the permeability of the bean's cell walls material. Second, sharp bursts of some VOCs were observed, while others did exhibit smooth release curves. It is believed that these reflect a direct observation of bean popping during roasting. Finally, discrimination between Coffea arabica and Coffea canephora was demonstrated based on high‐mass volatile markers, exclusively present in spectra of Coffea arabica. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号