首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The physicochemical properties of polyion complex (PIC) micelles were investigated in order to characterize the cores constituted of electrostatic complexes of two oppositely charged polyelectrolytes. The pH-sensitive micelles were obtained with double hydrophilic block copolymers containing a poly(acrylic acid) block linked to a modified poly(ethylene oxide) block and various polyamines (polylysine, linear and branched polyethyleneimine, polyvinylpyridine, and polyallylamine). The pH range of micellization in which both components are ionized was determined for each polyamine. The resulting PIC micelles were characterized using dynamic light scattering and small-angle X-ray scattering experiments (SAXS). The PIC micelles presented a core–corona nanostructure with variable polymer density contrasts between the core and the corona, as revealed by the analysis of the SAXS curves. It was shown that PIC micelle cores constituted by polyacrylate chains and polyamines were more or less dense depending on the nature of the polyamine. It was also determined that the density of the cores of the PIC micelles depended strongly on the nature of the polyamine. These homogeneous cores were surrounded by a large hairy corona of hydrated polyethylene oxide block chains. Auramine O (AO) was successfully entrapped in the PIC micelles, and its fluorescence properties were used to get more insight on the core properties. Fluorescence data confirmed that the cores of such micelles are quite compact and that their microviscosity depended on the nature of the polyamine. The results obtained on these core–shell micelles allow contemplating a wide range of applications in which the AO probe would be replaced by various cationic drugs or other similarly charged species to form drug nanocarriers or new functional nanodevices.  相似文献   

2.
陈学思 《高分子科学》2013,31(2):318-324
Polyion complex (PIC) micelles were spontaneously formed in aqueous solutions through electrostatic interaction between two oppositely charged block copolymers, poly(N-isopropylacrylamide)-b-poly(L-glutamic acid) and poly(N-isopropylacrylamide)-b-poly(L-lysine). Their controlled synthesis was achieved via the ring opening polymerization of N-carboxyanhydrides (NCA), ε-benzyloxycarbonyl-L-lysine (Lys(Z)-NCA) or γ-benzyl-L-glutamate (BLG-NCA) with amino-terminated poly(N-isopropylacrylamide) macroinitiator and the subsequent deprotection reaction. The formation of PIC micelles was confirmed by dynamic light scattering and transmission electron microscopy. Turbidimetric characterization suggested that the formed PIC micelles had a concentration-dependent thermosensitivity and their phase transition behaviors could be easily adjusted either by the block length of coplymers or the concentration of micelles.  相似文献   

3.
Two thermo- and pH-sensitive polypeptide-based copolymers, poly(N-isopropylacrylamide-co-N-hydroxymethylacrylamide)-b-poly(L-lysine) (P(NIPAAm-co-HMAAm)-b-PLL, P1) and poly(N-isopropylacrylamide-co-N-hydroxymethylacrylamide)-b-poly(glutamic acid) (P(NIPAAm-co-HMAAm)-b-PGA, P2), have been designed and synthesized by the ring-opening anionic polymerization of N-carboxyanhydrides (NCA) with amino-terminated P(NIPAAm-co-HMAAm). It was found that the block copolymers exhibit good biocompatibility and low toxicity. As a result of electrostatic interactions between the positively charged PLL and negatively charged PGA, P1 and P2 formed polyion complex (PIC) micelles consisting of polyelectrolyte complex cores and P(NIPAAm-co-HMAAm) shells in aqueous solution. The thermo- and pH-sensitivity of the PIC micelles were studied by UV/Vis spectrophotometry, dynamic light scattering (DLS), and transmission electron microscopy (TEM). Moreover, fluorescent PIC micelles were achieved by introducing two fluorescent molecules with different colors. Photographs and confocal laser scanning microscopy (CLSM) showed that the fluorescence-labeled PIC micelles exhibit thermo- and pH-dependent fluorescence, which may find wide applications in bioimaging in complicated microenvironments.  相似文献   

4.
Novel thermosensitive polyion complex (PIC) micelles were prepared in an aqueous medium based on the complexation of a pair of oppositely charged block ionomers, poly(2-isopropyl-2-oxazoline)-b-poly(amino acid)s (PiPrOx-b-PAA), containing thermosensitive PiPrOx segments. The controlled synthesis of PiPrOx-b-PAA was achieved via the ring-opening anionic polymerization of N-carboxyanhydrides (NCA) of either eta-benzyloxycarbonyl-l-lysine (Lys(Z)-NCA) or beta-benzyl-l-aspartate (BLA-NCA) with omega-amino-functionalized PiPrOx macroinitiators and the subsequent deprotection reaction under acidic or basic conditions. Gel permeation chromatography (GPC) and 1H NMR spectroscopy revealed that the syntheses of two block ionomers, poly(2-isopropyl-2-oxazoline)-b-poly(l-lysine) [PiPrOx-P(Lys)] and poly(2-isopropyl-2-oxazoline)-b-poly(aspartic acid) [PiPrOx-P(Asp)], proceeded almost quantitatively to give samples with a narrow molecular weight distribution (Mw/Mn 相似文献   

5.
A series of poly(?‐caprolactone/glycolide)‐poly(ethylene glycol) (P(CL/GA)‐PEG) diblock copolymers were prepared by ring opening polymerization of a mixture of ?‐caprolactone and glycolide using mPEG as macro‐initiator and stannous octoate as catalyst. Self‐assembled micelles were prepared from the copolymers using nanoprecipitation method. The micelles were spherical in shape. The micelle size was larger for copolymers with longer PEG blocks. In contrast, the critical micelle concentration of copolymers increased with decreasing the overall hydrophobic block length. Drug loading and drug release studies were performed under in vitro conditions, using paclitaxel as a hydrophobic model drug. Higher drug loading was obtained for micelles with longer poly(ε‐caprolactone) blocks. Faster drug release was obtained for micelles of mPEG2000 initiated copolymers than those of mPEG5000 initiated ones. Higher GA content in the copolymers led to faster drug release. Moreover, drug release rate was enhanced in the presence of lipase from Pseudomonas sp., indicating that drug release is facilitated by copolymer degradation. The biocompatibility of copolymers was evaluated from hemolysis, dynamic clotting time, and plasma recalcification time tests, as well as MTT assay and agar diffusion test. Data showed that copolymer micelles present outstanding hemocompatibility and cytocompatibility, thus suggesting that P(CL/GA)‐PEG micelles are promising for prolonged release of hydrophobic drugs.  相似文献   

6.
The synthesis of well‐defined diblock copolymers by atom transfer radical polymerization (ATRP) was explored in detail for the development of new colloidal carriers. The ATRP technique allowed the preparation of diblock copolymers of poly(ethylene glycol) (PEG) (number‐average molecular weight: 2000) and ionic or nonionizable hydrophobic segments. Using monofunctionalized PEG macroinitiator, ionizable and hydrophobic monomers were polymerized to obtain the diblock copolymers. This polymerization method provided good control over molecular weights and molecular weight distributions, with monomer conversions as high as 98%. Moreover, the copolymerization of hydrophobic and ionizable monomers using the PEG macroinitiator made it possible to modulate the physicochemical properties of the resulting polymers in solution. Depending on the length and nature of the hydrophobic segment, the nonionic copolymers could self‐assemble in water into nanoparticles or polymeric micelles. For example, the copolymers having a short hydrophobic block (5 < degree of polymerization < 9) formed polymeric micelles in aqueous solution, with an apparent critical association concentration between 2 and 20 mg/L. The interchain association of PEG‐based polymethacrylic acid derivatives was found to be pH‐dependent and occurred at low pH. The amphiphilic and nonionic copolymers could be suitable for the solubilization and delivery of water‐insoluble drugs, whereas the ionic diblock copolymers offer promising characteristics for the delivery of electrostatically charged compounds (e.g., DNA) through the formation of polyion complex micelles. Thus, ATRP represents a promising technique for the design of new multiblock copolymers in drug delivery. © 2001 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 39: 3861–3874, 2001  相似文献   

7.
The complexes formed between the positively charged random copolymers (RCPs) of methoxy-poly(ethylene glycol) monomethacrylate (MePEGMA) and (3-(methacryloylamino)propyl)trimethylammonium chloride (MAPTAC) with oppositely charged biosurfactants (bile salts) were studied using turbidimetric titration, steady-state fluorescence, dynamic light scattering, and electron microscopy. Studies showed that the complexes of the RCPs of MAPTAC and MePEGMA with less than 68 mol % of PEG content precipitate in water, whereas the complexes of the copolymer with 89 and 94 mol % of PEG content do not precipitate in the entire range of composition of the mixture including stoichiometric compositions when the electroneutral complexes are formed. The complexes with true hydrophobic domains, which are a prerequisite characteristic to serve as a carrier, can be obtained at much lower concentration than the critical micelle concentration of the corresponding surfactant. For a particular surfactant, hydrophobic domains are obtained at lower Z-/+ for the random copolymer with lower PEG content. The hydrodynamic radii of these complexes vary over a range of 20-35 nm. Overall results reveal that these complexes are qualitatively similar to the polyion complex micelles or block ionomer complexes obtained from the block copolymers and oppositely charged surfactants. As the surfactants used in this study are biocompatible, we hope that these soluble particles will be promising vectors in the field of drug delivery.  相似文献   

8.
To improve the stability of lysozyme-incorporated polyion complex (PIC) micelles in physiological condition, three types of hydrophobic groups, including phenyl (Phe), naphthyl (Nap), and pyrenyl (Py) terminal groups, were separately introduced to the omega-end of poly(ethylene glycol)-poly(alpha,beta-aspartic acid) block copolymers (PEG-P(Asp)). The goal was to enhance association forces between the enzyme, lysozyme, and PEG-P(Asp) carriers. Introduction of these hydrophobic groups significantly decreases micellar critical association concentration and increases the micellar tolerability against increasing NaCl concentrations. Particularly, PIC micelles formed from PEG-P(Asp) with Py groups was most stable against increasing NaCl concentrations up to 0.1 M. Significant deviation from a spherical shape for the micelles was also observed for the PEG-P(Asp)-Py system, consistent with an increased association number.  相似文献   

9.
以聚(ε-己内酯-b-L-丙交酯)/聚乙二醇单甲醚(P(CL-b-LLA)-b-mPEG)和聚(ε-己内酯-b-D,L-丙交酯)/聚乙二醇单甲醚(P(CL-b-DLLA)-b-mPEG)两种两亲嵌段共聚物为载体,选择了物理状态完全不同、而疏水性相近的吲哚美辛和维生素E为模型药物,研究了药物包载对高分子胶束形态的影响.发现两种药物在高分子胶束内部的增溶均会导致胶束形态发生显著改变,变化行为与胶束内核的结晶性和药物疏水性有关.另外,还研究了两种嵌段共聚物的载药性能,发现非结晶性疏水内核共聚物的药物包载率明显大于可结晶疏水内核的共聚物.  相似文献   

10.
We investigated the phase behavior and the microscopic structure of the colloidal complexes constituted from neutral/polyelectrolyte diblock copolymers and oppositely charged surfactant by dynamic light scattering (DLS) and small-angle neutron scattering (SANS). The neutral block is poly(N-isopropylacrylamide) (PNIPAM), and the polyelectrolyte block is negatively charged poly(acrylic acid) (PAA). In aqueous solution with neutral pH, PAA behaves as a weak polyelectrolyte, whereas PNIPAM is neutral and in good-solvent condition at ambient temperature, but in poor-solvent condition above approximately 32 degrees C. This block copolymer, PNIPAM-b-PAA with a narrow polydispersity, is studied in aqueous solution with an anionic surfactant, dodecyltrimethylammonium bromide (DTAB). For a low surfactant-to-polymer charge ratio Z lower than the critical value ZC, the colloidal complexes are single DTAB micelles dressed by a few PNIPAM-b-PAA. Above ZC, the colloidal complexes form a core-shell microstructure. The core of the complex consists of densely packed DTA+ micelles, most likely connected between them by PAA blocks. The intermicellar distance of the DTA+ micelles is approximately 39 A, which is independent of the charge ratio Z as well as the temperature. The corona of the complex is constituted from the thermosensitive PNIPAM. At lower temperature the macroscopic phase separation is hindered by the swollen PNIPAM chains. Above the critical temperature TC, the PNIPAM corona collapses leading to hydrophobic aggregates of the colloidal complexes.  相似文献   

11.
Two thermo‐ and pH‐sensitive polypeptide‐based copolymers, poly(N‐isopropylacrylamide‐coN‐hydroxymethylacrylamide)‐b‐poly(L ‐lysine) (P(NIPAAm‐co‐HMAAm)‐b‐PLL, P1 ) and poly(N‐isopropylacrylamide‐coN‐hydroxymethylacrylamide)‐b‐poly(glutamic acid) (P(NIPAAm‐co‐HMAAm)‐b‐PGA, P2 ), have been designed and synthesized by the ring‐opening anionic polymerization of N‐carboxyanhydrides (NCA) with amino‐terminated P(NIPAAm‐co‐HMAAm). It was found that the block copolymers exhibit good biocompatibility and low toxicity. As a result of electrostatic interactions between the positively charged PLL and negatively charged PGA, P1 and P2 formed polyion complex (PIC) micelles consisting of polyelectrolyte complex cores and P(NIPAAm‐co‐HMAAm) shells in aqueous solution. The thermo‐ and pH‐sensitivity of the PIC micelles were studied by UV/Vis spectrophotometry, dynamic light scattering (DLS), and transmission electron microscopy (TEM). Moreover, fluorescent PIC micelles were achieved by introducing two fluorescent molecules with different colors. Photographs and confocal laser scanning microscopy (CLSM) showed that the fluorescence‐labeled PIC micelles exhibit thermo‐ and pH‐dependent fluorescence, which may find wide applications in bioimaging in complicated microenvironments.  相似文献   

12.
刘世勇 《高分子科学》2013,31(6):924-937
We report on the fabrication of self-assembled micelles from ABC-type miktoarm star polypeptide hybrid copolymers consisting of poly(ethylene oxide), poly(L-lysine), and poly(ε-caprolactone) arms, PEO(-b-PLL)-b-PCL, and their functional applications as co-delivery nanocarriers of chemotherapeutic drugs and plasmid DNA. Miktoarm star copolymer precursors, PEO(-b-PZLL)-b-PCL, were synthesized at first via the combination of consecutive "click" reactions and ring-opening polymerizations (ROP), where PZLL is poly(ε-benzyloxycarbonyl-L-lysine). Subsequently, the deprotection of PZLL arm afforded amphiphilic miktoarm star copolymers, PEO(-b-PLL)-b-PCL. In aqueous media at pH 7.4, PEO(-b-PLL)-b-PCL self-assembles into micelles consisting of PCL cores and hydrophilic PEO/PLL hybrid coronas. The hydrophobic micellar cores can effectively encapsulate model hydrophobic anticancer drug, paclitaxel; whereas positively charged PLL arms within mixed micellar corona are capable of forming electrostatic polyplexes with negatively charged plasmid DNA (pDNA) at N/P ratios higher than ca. 2. Thus, PEO(-b-PLL)-b-PCL micelles can act as co-delivery nanovehicles for both chemotherapeutic drugs and genes. Furthermore, polyplexes of pDNA with paclitaxel-loaded PEO(-b-PLL)-b-PCL micelles exhibited improved transfection efficiency compared to that of pDNA/blank micelles. We expect that the reported strategy of varying chain topologies for the fabrication of co-delivery polymeric nanocarriers can be further applied to integrate with other advantageous functions such as targeting, imaging, and diagnostics.  相似文献   

13.
Photocrosslinked nanogels with a hydrophobic core and hydrophilic shell are successfully fabricated with the goal of obtaining a biocompatible and biodegradable drug carrier for hydrophobic anticancer drugs. These nanogels are composed of amphiphilic triblock copolymers, poly(D,L-lactic acid)/poly(ethylene glycol)/poly(D,L-lactic acid) (PLA-PEG-PLA), with acrylated groups at the end of the PLA segments. The copolymers are synthesized by ring-opening polymerization and possess a low CMC (49.6 mg x L(-1)), which easily helps to form micelles by self-assembly. The acrylated end groups allow the micelles to be photocrosslinked by ultraviolet irradiation, which turn the micelles into nanogels. These nanogels exhibit excellent stability as a suspension in aqueous media at ambient temperature as compared to the micelles. Moreover, the size of the nanogels is easily manipulated in a range of 150 to 250 nm by changing the concentration of crosslinkers, e.g., ethylene glycol dimethacrylate, and ultraviolet light irradiation time. The nanogels achieve a high encapsulation efficiency and offer a steady and long-term release mechanism for the hydrophobic anticancer drug, CPT. It shows that these nanogels are useful for a hydrophobic anticancer drug-carrier system. [pictures: see text] Formation of the PLA-PEG-PLA nanogels.  相似文献   

14.
《Soft Materials》2013,11(2-3):71-84
Abstract

When polyelectrolyte‐neutral block copolymers are mixed in solutions to oppositely charged species (e.g., surfactant micelles, macromolecules, proteins, etc.), there is the formation of stable “supermicellar” aggregates combining both components. The resulting colloidal complexes exhibit a core‐shell structure, and the mechanism yielding to their formation is electrostatic self‐assembly. In this contribution, we report on the structural properties of “supermicellar” aggregates made from yttrium‐based inorganic nanoparticles (radius 2 nm) and polyelectrolyte‐neutral block copolymers in aqueous solutions. The yttrium hydroxyacetate particles were chosen as a model system for inorganic colloids, and also for their use in industrial applications as precursors for ceramic and opto‐electronic materials. The copolymers placed under scrutiny are the water‐soluble and asymmetric poly(sodium acrylate)‐b‐poly(acrylamide) diblocks. Using static and dynamical light‐scattering experiments, we demonstrate the analogy between surfactant micelles and nanoparticles in the complexation phenomenon with oppositely charged polymers. We also determine the sizes and the aggregation numbers of the hybrid organic–inorganic complexes. Several additional properties are discussed, such as the remarkable stability of the hybrid aggregates and the dependence of their sizes on the mixing conditions.  相似文献   

15.
If a vesicle is a better model of a membrane in the context of the hydrophobic effect, then from the charge distribution point of view, a catanionic micelle is a closer model to a biomembrane. We have prepared and characterized two different types of catanionic micelles of sodium dodecyl sulfate (SDS) and cetyl N,N,N-trimethylammonium bromide (CTAB) having different surface charge ratios using optical spectroscopy and transmission electron microscopy. The average size of both types of mixed micelles was found to be much larger than that of micelles containing uniformly charged headgroups. Catanionic micelles containing higher concentrations of positively charged headgroups (CTAB) are larger in size, less compact, and more polar compared to the micelles containing higher concentrations of negatively charged headgroups (SDS). We have used these catanionic micelles as membrane mimetic systems to understand the interaction of piroxicam, a nonsteroidal anti-inflammatory drug (NSAID) of the oxicam group, with biomembranes. In continuation of our work on membrane mimetic systems, we have used spectral properties of the drug itself to understand the effect of the presence of mixed charges on the micellar surface in guiding the interaction of catanionic micelles with piroxicam. Our earlier studies of the interaction of piroxicam with micelles having uniform surface charges have shown that the charge on the micellar surface not only dictates which prototropic form of the drug will be incorporated in the micelles but also induces a switch-over between different prototropic forms of piroxicam. The equilibrium of this switch-over is extremely sensitive to the environment. In this study, we demonstrate how even small changes in the electrostatic forces obtained by doping the uniformly charged surface of the micelles with oppositely charged headgroups (as in catanionic micelles) are capable of fine-tuning this equilibrium. This implies that the surface charge of biomembranes, which are quite diverse in vivo, might play a significant role in selecting a particular form of the drug to be presented to its targets.  相似文献   

16.
17.
The synthesis and self‐assembly properties in aqueous solutions of novel amphiphilic block copolymers composed of one hydrophobic poly (lauryl methacrylate), (PLMA) block and one hydrophilic poly (oligo ethylene glycol methacrylate) (POEGMA) block are reported. The block copolymers were prepared by RAFT polymerization and were molecularly characterized by size exclusion chromatography, NMR and FT‐IR spectroscopy, and DSC. The PLMA‐b‐POEGMA amphiphilic block copolymers self‐assemble in nanosized complex nanostructures resembling compound micelles when inserted in aqueous media, as supported by light scattering and TEM measurements. The encapsulation and release of the model, hydrophobic, nonsteroidal anti‐inflammatory drug indomethacin in the polymeric micelles is also investigated. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55, 155–163  相似文献   

18.
We have studied the effect of normal forces and shear forces on the stability and functionality of a polymer brush layer formed upon adsorption of polymeric micelles on hydrophilic and hydrophobic surfaces. The micelles consist of oppositely charged polyelectrolyte blocks (poly(acrylic acid) and poly(N-methyl 2-vinyl pyridinium iodide), and a neutral block (poly(vinyl alcohol)) or neutral grafts (poly(ethylene oxide)). The strength of the attachment of the micellar layers to various substrates was evaluated with Atomic Force Microscopy. Flow cell experiments allowed for the evaluation of long-term stability of coatings in lateral flow. Fixed angle optical reflectometry was used to quantify protein (BSA) adsorption on the micellar layers after their exposure to flow. The results show that adsorbed micellar layers are relatively weakly attached to hydrophobic surfaces and much stronger to hydrophilic surfaces, which has a significant impact on their stability. Adsorbed layers maintain their ability to suppress protein adsorption on hydrophilic surfaces but not on hydrophobic surfaces. Due to the relatively weak attachment to hydrophobic surfaces the structure of adsorbed layers may easily be disrupted by lateral forces, such that the complex coacervate-brush structure no longer exists.  相似文献   

19.
We report on the stability of complex coacervate core micelles, i.e., C3Ms (or PIC, BIC micelles), containing metal coordination polymers. In aqueous solutions these micelles are formed between charged-neutral diblock copolymers and oppositely charged coordination polymers formed from metal ions and bisligand molecules. The influence of added salt, polymer concentration, and charge composition was investigated by using light scattering and cryo-TEM techniques. The scattering intensity decreases strongly with increasing salt concentration until a critical salt concentration beyond which no micelles exist. The critical micelle concentration increases almost exponentially with the salt concentration. From the scattering results it follows that the aggregation number decreases with the square root of the salt concentration, but the hydrodynamic radius remains constant or increases slightly. It was concluded that the density of the core decreases with increasing ionic strength. This is in agreement with theoretical predictions and is also confirmed by cryo-TEM measurements. A complete composition diagram was constructed based on the composition boundaries obtained from light scattering titrations.  相似文献   

20.
In this study, with the aim of designing an ideal anticancer drug carrier, we synthesized novel amphiphilic graft copolymers, P(Glu-alt-PEG)-graft-PCLA, based on poly(ethylene glycol) (PEG) segments and glutamic acid (Glu) units as the hydrophilic main chain, and poly(?-caprolactone-co-lactide) (PCLA) as hydrophobic branches. The chemical structure of the copolymers was characterized by (1)H MNR and FT-IR. The self-assembly of the copolymers to form micelles was studied by TEM, DLS and fluorescence spectroscopy. In vitro doxorubicin controlled release studies demonstrated that these graft copolymer micelles had high drug loading capacity and good controlled released properties, demonstrating their potential as a novel anticancer drug carrier. The drug loaded graft copolymer micelles exhibited efficient inhibition of HeLa cells in in vitro studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号