首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
胡磊  孙勇  林鹿 《化学进展》2012,24(4):483-491
5-羟甲基糠醛(5-HMF)被认为是一种非常重要的平台化合物。利用离子液体介导制备5-HMF的研究已经引起了人们越来越广泛的重视,并取得了较为理想的研究成果。本文对离子液体介导制备5-HMF的研究成果进行了系统的归纳和总结,着重介绍了离子液体作为反应溶剂和催化剂在5-HMF制备过程中的应用以及离子液体介导制备5-HMF的形成机理和影响因素,并对离子液体介导制备5-HMF的研究前景进行了展望,以期为5-HMF的进一步研究提供思路和参考。  相似文献   

2.
Among the many types of lignocellulosic biomass pretreatment methods, the use of ionic liquids (ILs) is regarded as one of the most promising strategies. In this study, the effects of four kinds of ILs for pretreatment of lignocellulosic biomass such as bagasse, eucalyptus, and cedar were evaluated. In direct ethanol fermentation from biomass incorporated with ILs by cellulase-displaying yeast, 1-butyl-3-methylimidazolium acetate ([Bmim][OAc]) was the most effective IL. The ethanol production and yield from [Bmim][OAc]-pretreated bagasse reached 0.81 g/L and 73.4% of the theoretical yield after fermentation for 96 h. The results prove the initial concept, in which the direct fermentation from lignocellulosic biomass effectively promoted by the pretreatment with IL.  相似文献   

3.
Some organic solvents are highly toxic, flammable, and even explosive. In particular, high vapor pressures and toxicity of certain volatile organic solvents may cause significant environmental problems. Therefore, alternative solvents or media with tunable and versatile solvation properties for conducting chemical reactions and materials synthesis have been actively sought. Ionic liquids have numerous applications not only as environmentally benign reaction media, but also as catalysts and reagents. Due to the increase of environmental consciousness in chemical research and industry, the challenge for a sustainable environment calls for clean procedures that avoid the use of harmful organic solvents. Due to the special properties of ILs (ionic liquids) such as wide liquid range, good solvating ability, negligible vapor pressure, non-inflammability, non-volatility, environment friendly medium, high thermal stability, good stability in air and moisture, easy recycling and rate promoters etc. they are used in organic synthesis. Therefore, ionic liquids have attracted the attention of chemists and act as catalyst and reaction medium in organic reactions with high activity. Highly efficient methods are explored for the preparation of S-heterocycles with the application of ILs as catalyst and reaction medium.  相似文献   

4.
Plastics are wonderful materials that have modernized our daily life; however, importance of effective recycling of plastics is gradually recognized widely. In this account, we describe our discovery of new and efficient methods for the chemical recycling of plastics using ionic liquids (ILs). Since the chemical recycling usually requires high temperature conditions to breakdown chemical bonds in polymeric materials, we thought that less-flammability and non-volatility of ionic liquids are the most suitable physical properties for this purpose. Ionic liquids successfully depolymerized polyamides and unsaturated polyesters smoothly and corresponding monomeric materials were obtained in good yields. To the best of our knowledge, this was the first use of Ionic liquids for such reactions. However, we encountered another difficult problem-separation. To solve the problem, we developed solubility-switchable ionic liquids, a new type of ionic liquids in which solubility is readily changed using the chemistry of protective groups. Conversion between hydrophilic and lipophilic forms was readily achieved using a simple chemical treatment under mild conditions, and the complete separation of products was achieved by liquid-liquid-extraction. The robustness of either form unlocks their wide use as reaction solvents.  相似文献   

5.
《Comptes Rendus Chimie》2007,10(3):152-177
Over the last years, interest involving ionic liquids (ILs) used as reaction medium for homogeneous enantioselective catalysis has exponentially expanded. In many cases, the use of ILs provides several advantages over reactions in organic solvents in terms of activity and enantioselectivity. Even more important, the catalyst immobilization in IL can avoid its leaching and consequently favour its recycling. This review deals with recent advances in the investigation of these new solvents in asymmetric catalysis. We go over enzymes, chiral organocatalysts and metal complexes containing chiral ligands used in enantioselective processes using ionic liquids, with special emphasis on the catalyst reuse and also the separation of organic products.  相似文献   

6.
纤维素在离子液体中的降解转化   总被引:1,自引:0,他引:1  
周理龙  吴廷华  吴瑛 《化学进展》2012,24(8):1533-1543
随着社会对能源资源的需求越来越大,生物质资源得到了广泛的重视,世界上存储量最大的生物质资源--纤维素在新兴溶剂离子液体中的降解转化受到了越来越多的关注。本文简要介绍了近几年来纤维素在离子液体中的溶解、单糖(果糖、葡萄糖)在离子液体中脱水转化为5-HMF(5-羟甲基糠醛)和纤维素在离子液体中一步降解转化为5-HMF的研究。指出目前研究存在的缺点与不足,并提出了可能的解决方法。  相似文献   

7.
In this Minireview, the state of the art in the use of ionic liquids (ILs) and deep eutectic solvents (DESs) as alternative reaction media for biocatalytic processes and biomass conversion is presented. Initial, proof‐of‐concept studies, more than a decade ago, involved first‐generation ILs based on dialkylimidazolium cations and non‐coordinating anions, such as tetrafluoroborate and hexafluorophosphate. More recently, emphasis has switched to more environmentally acceptable second‐generation ILs comprising cations, which are designed to be compatible with enzymes and, in many cases are derived from readily available, renewable resources, such as cholinium salts. Protic ionic liquids (PILs), prepared simply by mixing inexpensive amines and acids, are particularly attractive from both an environmental and economic viewpoint. DESs, prepared by mixing inexpensive salts with, preferably renewable, hydrogen‐bond donors such as glycerol and amino acids, have also proved suitable reaction media for biocatalytic conversions. A broad range of enzymes can be used in ILs, PILs and DESs, for example lipases in biodiesel production. These neoteric solvents are of particular interest, however, as reaction media for biocatalytic conversions of substrates that have limited solubility in common organic solvents, such as carbohydrates, nucleosides, steroids and polysaccharides. This has culminated in the recent focus of attention on their use as (co)solvents in the pretreatment and saccharification of lignocellulose as the initial steps in the conversion of second‐generation renewable biomass into biofuels and chemicals. They can similarly be used as reaction media in subsequent conversions of hexoses and pentoses into platform chemicals.  相似文献   

8.
In the past decade, ionic liquids (ILs) have received enormous interest as solvents for cellulose. They have been studied intensively for fractionation and biorefining of lignocellulosic biomass, for dissolution of the polysaccharide, for preparation of cellulosic fibers, and in particular as reaction media for the homogeneous preparation of highly engineered polysaccharide derivatives. ILs show great potential for application on a commercial scale regarding recyclability, high dissolution power, and their broad structural diversity. However, a critical analysis reveals that these promising features are combined with serious drawbacks that need to be addressed in order to utilize ILs for the efficient synthesis of cellulose derivatives. This review presents a comprehensive overview about chemical modification of cellulose in ILs. Difficulties encountered thereby are discussed critically and current as well as future developments in this field of polysaccharide research are outlined.  相似文献   

9.
The facile syntheses of 1,2- and 3,5-cyclic sulfite and sulfate furanoside diesters were conducted in molecular solvents and ionic liquids in the presence of immobilised morpholine. Molecular solvents and ionic liquids performed similarly with regards to overall yields. However, the use of ILs allowed for the reactions to be carried out under atmospheric conditions and showed good recyclability. Additionally, increases in product stability was achieved in ILs over organic solvents, in particular, in bis{(trifluoromethanesulfonyl)imide} and trispentafluoro-ethyltrifluorophosphate-based ionic liquids, which were also excellent media to control the hydrolysis of thionyl chloride and sulfuryl chloride.  相似文献   

10.
室温离子液体是一种新兴的可替代挥发性有机化合物(VOCs)的绿色溶剂和高效的反应介质,为减少或消除化学反应和过程工程中的环境问题提供了重要的途径。以离子液体为反应介质进行聚合反应,可消除或减小VOCs的危害,也可实现催化剂的有效回收利用和聚合物的纯化,更好地控制聚合反应及聚合产物的结构与性质、乃至直接用作高效的聚合催化剂。本文综述近年来离子液体中聚合反应的研究现状及最新进展,分析现存的问题,并展望今后的发展方向。  相似文献   

11.
离子液体的制备及其在酶催化反应中的应用   总被引:3,自引:0,他引:3  
夏咏梅  吴红平  张玥  方云  孙诗雨  石玉刚 《化学进展》2006,18(12):1660-1667
离子液体,尤其是非水溶性离子液体可以作为一种溶剂或酶的载体用于非水相酶促反应中,也可以用于双相体系中的酶促反应。本文概括性介绍了常见离子液体的制备,总结和讨论了离子液体中酶的活性、稳定性、反应选择性以及各类酶在离子液体中的催化反应行为。离子液体的物性及其与酶的相容性对酶本身及酶促反应都有很大的影响。在非水相酶促反应中,离子液体的极性作用不遵从通常用来判别大多数有机物溶剂行为的规则,比如lgP规则。  相似文献   

12.
Stefan Baj 《合成通讯》2013,43(14):2385-2391
Cyclic ketones have been efficiently oxidized with hydrogen peroxide using acidic ionic liquids (ILs) as solvents. This is a new method for the synthesis of lactones with high yields that does not utilize any additional catalysts and enables ILs to be recycled.  相似文献   

13.
Pyrylium salts represent a new group of ionic liquids (ILs) containing a positive charge on the oxygen atom. The novel ILs were obtained starting with 4-pyrones from petroleum feedstock and renewable resources and sulfonic acids. The use of carboxylic acids instead of salts resulted in the formation of cocrystals. The synthesized pyrylium ionic liquids were stable in air and in contact with water and common organic solvents. The permanganate indices which are characteristic for prepared sulfonates were also investigated. The pyrylium ionic liquids were useful as immobilizers and dissolving agents in hydrosilylation reactions.  相似文献   

14.
丁阳  刘梦格  卜健行  肖雄坤  王炜  盛文兵 《化学通报》2022,85(9):1070-1076,1061
低共熔溶剂(DESs)是一种新型的离子液体(ILs)类似物,与传统有机溶剂、离子液体相比,DESs具有低毒、廉价、易于合成、生物可降解性等特点,因此在众多领域广受关注。近年来DESs在有机合成领域备受关注,被广泛用作合成反应的溶剂、催化剂、反应物等,在有机反应方面存在很大发展空间,本文综述了DESs在有机合成反应中的应用,重点讨论其在氧化还原反应、取代反应、缩合反应、环化反应等方面的研究进展,为其开发应用提供新思路。  相似文献   

15.
田玉奎  邓晋  潘涛  郭庆祥  傅尧 《催化学报》2011,32(6):997-1002
在离子液体中采用不同的Lewis酸催化葡萄糖和果糖脱水制备5-羟甲基呋喃甲醛(5-HMF).结果表明,CrCln和SnCln均可高效催化葡萄糖转化为5-HMF.另外,Lewis酸的酸性越强,其催化果糖转化为5-HMF的产率越高.镧系金属氯化物在反应中表现出较好的催化活性和产物选择性.同时还研究了离子液体结构对催化反应的...  相似文献   

16.
Catalytic reactions in two liquid phases containing ionic liquids (ILs), in which organic reactions proceed in the ILs phase and products are extracted to the other liquid phase, are efficient and environmentally benign. This short review briefly reports the development of catalytic application in biphasic systems containing ILs in the last two years. Recent progress for the functionalization of ILs themselves and combinations of homogeneous and heterogeneous catalysts with ILs are described. Prospects and future challenges are also addressed.  相似文献   

17.
张兰  乐长高 《化学通报》2011,(10):917-925
介绍了离子液体作溶剂、助溶剂、催化剂和反应试剂与微波协同促进有机合成的研究进展。离子液体与微波协同促进有机合成反应,缩短了反应时间,提高了反应的选择性和产率,对环境更加友好。  相似文献   

18.
近年来,贵重的手性催化剂的回收与再利用越来越引起化学工作者的关注,而离子液体在催化剂回收方面有其独特的优势.本文综述了离子液体在手性催化反应中的应用,在回收催化剂的同时,也能一定程度上提高催化剂的催化效率:着重介绍了新型含咪唑盐手性催化剂及其在不对称催化中的应用,由于它在离子液体和有机溶剂的显著差异可以很容易地得到回收,并且能一定程度地稳定催化剂,提高催化效率,这对我们设计合成新型可回收的催化剂具有重要的借鉴意义.  相似文献   

19.
Metal nanoparticles (MNPs) with a small diameter and narrow size distribution can be prepared by H(2) reduction of metal compounds or decomposition of organometallic species dissolved in ionic liquids (ILs). MNPs dispersed in ILs are catalysts for reactions under multiphase conditions. These soluble MNPs possess a pronounced surfacelike rather than single-site like catalytic properties. In other cases the MNPs are not stable and tend to aggregate or serve as reservoirs of mononuclear catalytically active species.  相似文献   

20.
Dihydropyrimidinones, bis(indolyl)methanes, and N-alkyl and N-arylimides were synthesized efficiently under mild reaction conditions in the presence of two types of ionic liquids. In each section, effects of different ILs on the yield of reactions were investigated. The use of ionic liquids offer improvements for the synthesis of title compounds with regard to the yield of products, simplicity in operation, short reaction times and green aspects by avoiding toxic catalyst and organic solvents.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号